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FOREWORD

This final report was prepared by United Aircraft Corporate Systems Center
for NASA Electronics Research Center as fulfillment of Contract No. NAS 12-91,
The work described in this report was initiated by United Aircraft Corporate Sys-
tems Center under a company funded research program and extended and docu-
mented herein for NASA Electronics Research Center under the above-referenced
contract. The principle goals of the contract are: (1) to develop analytical models
of the computational errors associated with the computational process of strapdown
inertial navigators and (2) by using these models, to establish the computational
requirements of strapdown navigators for the various phases of flight of typical
missions. This report is divided into two volumes, The first volume describes
the analytical models of the computational errors of strapdown navigators and
reports upon specific hardware application studies and computational requirements,
The second volume*describes in detail the digital computer program developed
under this program that permits rapid evaluation of strapdown associated computa-
tional errors for restrained sensor systems.

* CR-86022
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1. SUMMARY

This report presents a detailed and comprehensive evaluation of the computational
processes of strapdown inertial navigators; the computational requirements and error
sources are defined and analytic models of the computational errors are developed,

The analytic computational error models were developed with the aid of detailed digital
simulations of the flight environment, the strapdown inertial sensors, the computer
hardware and the numerical processes, The strapdown computational processes
investigated were the determination of attitude, the resolution of accelerometer data
into the inertial frame and the computation of position,

The design and performance evaluation of the strapdown computational process
is shown to be simplified by its separation from specific sensor mechanizations. All
strapdown sensor mechanizations can be placed into two classes. Class 1 contains
those sensors whose input axes are restrained relative to the vehicle and Class 2
contains those sensors whose input axes are free of vehicle orientation. The computa-
tional process for all sensor mechanizations within a class are identical. Table I-I
lists the sensors of each class that are currently being investigated in the guidance
industry, Within each class only a description of the sensor loops' digital information

output (frequency response, frequency of data availability and resolution or quantization)
is required to evaluate its effect on computational accuracy.

For each class of sensor mechanization, the critical computational problems have
been isolated and each computational error source and its characteristics have been
separated from the total system error. Table I-II lists the parameters that have been
determined to effect computational accuracy. Their effect on computational accuracy
is precisely described by analytic models that have been developed for linear and
angular environments, both discrete and random. These computational error models
permit the performance evaluation of strapdown computational processes to be
accomplished for any arbitrary set of mission requirements and environments without
employing additional digital simulations of the strapdown system.

The critical computational problems associated with strapdown inertial navi-
gators are defined and discussed in the main body of this report. Substantiating
data and mathematical derivations are presented in appendices A through G.

The attitude computational error associated with the numerical integration of
the angular kinematic equations necessary with restrained gyros is characterized by
four distinct regions of error as shown in Figure I-1:

(1) Round-off - the error is inversely proportional to computer word length

(2) Quantization - the error is proportional to gyro output pulse weight

(3) Truncation - the slope is proportional to the order of the numerical
integration scheme

(4) Bandwidth limited - the region in which the computational frequency is less
than the angular motion frequency.

I-1



Of primary importance for a restrained gyro aftitude reference system is the
development of a gyro data processing technique that eliminates the interrelated
problems of commutativity and sensor quantization and permits the use of any
order integration scheme to minimize the truncation error, Such a scheme is
developed herein,

The individual strapdown inertial sensor loops are coupled only in the digital
data processing; therefore, an investigation has been made of the following sensor
utilization techniques, which significantly enhance the strapdown navigator's mission
flexibility, accuracy and reliability for small increases in the computational
requirements:

(1) Shifting of the dynamic operating range of torque-rebalanced
sensors as a function of environment to improve performance and
reduce power during periods of low level environments.

(2) Staggering the sampling of the sensors in time and performing
resynchronization within the computer to reduce the weight of
the interface electronics between the sensors and the computer,

(3) Using a single gyro properly oriented relative to a basic triad
of gyros to achieve the same reliability as obtainable with a
completely redundant sensor package.

Utilizing the developed analytical models of the computational errors, a digi-
tal computer program (described in Volume II *of this report) has been developed
that permits the evaluation of the effect that a computational process has upon attitude,
velocity and position accuracy. Evaluated in this program are the computational func-
tions of the attitude determination process and the coordinate resolution of accelerometer
data for restrained sensor systems. This program has been utilized to parametric-
ally define computational requirements in terms of performance for a boost-parking
orbit, injection and coast-translunar injection mission. This study indicates the
trends of computational requirements with variations in required accuracy.

* CR-86022
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TABLE I-II

PARAMETERS AFFECTING STRAPDOWN COMPUTATIONAL ACCURACY

e Vehicle Angular & Linear Motion

Amplitude
Frequency
Phase

e Sensor Loop Characteristics

Bandwidth
Data Rate
Quantization

e Computer Hardware

Word Length
Speed

e Computational Algorithms
*
Sensor Data Processing or Filtering
Order of Numerical Integration Schemes
Order of Transendental Approximations
Frequency of Solution

* Extraction of angular rate or specific force from their respective integrals
provided by the inertial sensors

I-4




APPENDIX F
TRUNCATION ERROR MODELS FOR RANDOM VIBRATORY

ANGULAR MOTIONS

An actual flight environment will consist of low frequency deterministic
motions superimposed on a random background of vibratory motions; therefore, the
computational errors introduced by vibratory motions must also be considered.

As described in Section IV A the attitude matrix computational truncation error
for the input of a single systematic motion can be described in terms of an angular
drift rate whose magnitude is a function of the computer and integration processes.
For a sinusoidal input, the truncation error can be described by the following
equation

. b df nf
C—kaB sin (ch (F-1)

.

where k, b the angular amplitude exponent, and d, the frequency ratio exponent,
are dependent upon the order of the integration scheme; f is the number of inte-
grations performed per second, while f and 8 are the fre&uency and amplitude of the
sinusoidal motion. Table IV-I lists these coefficients.

Digital simulations have shown that the attitude computations possess the prop-
erty of superposition such that equation (¥-1) can be expanded to describe multiple,
simultaneous sinusoidal inputs about an axis of rotation fixed with respect to the
sensor package:

m T f
z

(F-2)
n=1 c

Because of the superposition property, the attitude error for an angular random
environment of fixed spacial orientation described by an angular rate power spectral
density over a frequency range can be analytically derived in closed form. The
derivation and the comparison of it with the results of digital simulations follows,

"Equation (F-1) can be written in terms of the maximum rate amplitude rather
than maximum angular amplitude for a sinusoidal oscillation at frequency, fi:



. ka[; a5
cC () = sin 51
C

The maximum angular rate amplitude at a frequency f; can be estimated
from the power spectral density describing the random angular motion, ¢, by

B () = 20 () Af

Substituting equation (¥-4) into (¥-3) yields

f k b m £,
i

2f
c

. 2 d
C(f)= —F [26()Af] " sin" (
(27rfi)

)

For rectangular, 2nd order Runge-Kutta and 4th order Runge-Kutta this
equation becomes

. tiR 2 ™
C. (f) =——— & )Af sin” (—— ) K = 117
R Vi 2”2f12 i 21 R
fk m f
‘ c2 .2 2 4 T
£y = : _
Cy (£) ==, ¢ () (@AD" sin” (57-) ky= .1
47 'f, c
1
fk T f
Tc4 2 2 .6 i _
C, (fi) T 24 9 (fi) (Af) sin ('2—f ky=.05
47 °f, ¢

(¥=3)

(F-4)

(F-5)

(F-6)

(F-7)

(F-8)




Replacing the summation process of equation (F-2) by an integration process
over all frequencies, the total error for the rectangular integration becomes

fk f

% _ CR o ofy .2 7f

CR = 3 f 5 sin (——zf ) df (F-9)
27 o f c

By a change in the integration variable (7 = 7f/2 f,), this equation can be

simplified to m fo
of
= _ lif_{ ¢ chT sinz'r dr
R ar Jo ¢077) .2 (F-10)

By the same change in the variable (Af to AZ), the errors for the 2nd and
4th order integration processes at frequency f;, (Equations F-7 and F-8) become

4
2f i
) C-ri k2 9 zfc‘ri sin ('ri) 9
16 f « T,
c i
2f T k 2f T, sin (1))
: c i 4 2 c i i 2
C, ) = ¢ ( ) (AT ) (F-12)
4 T 2 T 4
16 fC7T ‘ri

The summation process for the total computational error (Equation F-2) can
then be expressed as

2
- k n 2f 7. sin (7))
3 2 —
¢, = —*= T [o(—H ——1)ar] (F-13)
m
16f r i=1 T,
C 1
- k n 2f, 7. sin"(7 2
¢, = 4 T [o(—1 Y AT] (F-14)
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These expressions can also be expressed as a double summation, that is functionally

- n n n 0, ifi
C=2 g =2 3 ggAT AT 556, = Lo (F-15)
i=1 i=1 j=1 ) »
Functionally, this double summation behaves like a double integral with the
variables of integration related by a delta function. The error equations (based
upon functional analysis) can then be expressed as
= c sm2u chv sm2V
C o( ol ) 6 (v-u)dvdu (F-16)
2 2 T
16 7 f V
- 2f v sin3 1
c, ffq)( sm S o(—) T 6 (v-wydvdu (F-17)
T 2
167w fc v
with this assumption validated by the favorable agreement between this model and
the simulation results to be presented below.
Integrating first with respect to (v ), the above equations have value only
at (v )equal to (U ) and by definition of the delta function,
x (@ = f 6w x () av (F-18)
become
i
— 2f u 4
= k 2f 2 ¢ sin
& - 2 /‘ c ¢ (—,sn W 4, (F-19)
2 2 ™ 4
167 f (o) u
mf
0
= 2f 2 fcu sin6 u
c - % C %" ( ) CI (F-20)
4 2 @ 4
167 f o u
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In applying equations (F-10), (F-19), and (F-20), the power spectral density
input to the computer is that passed on to it by the gyro

®(5) :[Gg(qz o off 0 (F-21)

where Gg is the gyro transfer function, Gy is the sensor package transfer function
and ¢'(f) is the power spectral density at the sensor package mounting base.

In general the integrals involved in the above equations must be evaluated
numerically. Figure F-1 evaluates the integrals of the above equations for the cases
in which the power spectral density is constant over the entire frequency range.

The digital simulations used in verifying these results were made by approximating
power spectral densities with multiple discrete sinusoids applied simultaneously. The
discrete frequencies were chosen from a table of random numbers after first assuming
a band limited power spectral density. The spectrum was then divided into sub-bands,
each containing one of the discrete frequencies, and the amplitude of each of the ap-
proximating sinusoids was determined by equating the power content to that in the sub-
bands containing them. Runs were made for several sets of approximating sinusoids
with power spectral density band limited to 50 and 100 cps (f ). The magnitude of the
power spectral density employed were 0,55 and 1,1 (rads/sec)z/cps, extremely large
values compared to flight values, A large magnitude was selected in order to empha-
size the truncation error relative to the round-off error, Frequency ranges of 50
and 100 cps motion input were selected as being typical of the bandwidth of restrained

gyros, Figures F-2 and F-3 present the analytical results and simulation data for
comparison,

Figure -2 displays the computational error for a fixed angular environment as
the order of the integration scheme and the frequency with which the equations are
solved are varied. Figure F-3 displays the computational error for a fixed integration
scheme, 2nd order, as the magnitude and frequency range of the angular environment
and the computational frequency are varied. Both figures demonstrate good agreement
(slopes and relative magnitude between error curves) between the theoretical and
simulation results for all cases in which the computational frequency (f )} is higher than
the upper frequency limit of the vibratory input (f ). The principal d1fference between
the theoretical and simulation results for fo > fo 1s a constant factor in the truncation
region: 2.5 for the 4th order scheme; 3.5 for the 2nd order scheme and 3.3 for the
rectangular process. Figures F-4 and F-5 display the same results as contained in
Figures F-2 and F-3 but with the theoretical results multiplied by the cited constants
at all frequencies in the truncation region. Inthese figures, the agreement between
theoretical and simulation results discussed above is readily apparent.

Additional comparison of the theoretical and simulation results with regard to
the exponents of the computational frequency, the amplitude and the frequency bandwidth

F-5
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* of the vibratory input are presented in Tables I'~I and F~-II. Table F-I presents the
theoretical model asymtotic limits for the computational frequency both higher and lower
than the maximum vibratory input frequency as simplified for the special case of con-
stant power spectral density (¢) investigated. Table F-II compares the theoretical and
simulation results for the exponents of f,, 4, and f,- As would be expected from the
prior visual inspection of Figures F-4 and F-5, good agreement is obtained in the
region of f, >.1 f,, which is the principal frequency region of concern in the design of
the computational process. More precise evaluation of the exponents than is presented
via digital simulations would require additional runs.

Two possible explanations of the failure of the theoretical model for f, < .1 £,
are: (1)the lack of a complete error model for discrete sinusoidal inputs for
fe < fo as has been noted for the rectangular integration process (Section IV.A.1) or
(2) the failure of the superposition characteristics in this region that has been assumed
and verified for fc > f;.

A similar analysis was performed for coning motion in a random environment.
In this analysis a worst case was assumed, i.e., that of identical power spectral
densities, &(f), of the vibrations on both axes with a ninety degrec. phase shift at all
frequencies. In practice, coning if it occurs, will occur at discrete frequencies or
in a narrow frequency region in which a vibratory coupling mechanism occurs, i.e.,
control systems, structure or sensor housing transmissibility breakdown. For coning
caused by discrete inputs the drift rate in the truncation region (f,/fc < .8) may be
expressed as

ch) = kgl f(l:”al (F-22)

where k and a are functions of the integration scheme. With g = ,é/277f and using
equation (F-4), this becomes

& -5 s m P A (F-23)
2n

In a similar fashion as before

_ 8f
k 1 e a-2

¢ = —5 3 f o () £27 af (F-24)
2T fc 0o

For frequencies of input above f O/fc >. 8, the drift rate becomes independent
of the integration scheme



TABLE F-I

COMPUTATIONAL TRUNCATION ERROR FOR CONSTANT ANGULAR POWER
SPECTRAL DENSITY

Computational Frequency Region

f f
Integration Scheme fo_ <1 f_o_ > 1
c c
Theoretical Model Equations
. kR fo kR
Rectangular C = ral e o) Y o)
c
- k f k
: 2 2 o 2 2 1
. C = _= — = —_
2nd Order sar ¢ 2 s ¢ 1
f c
c
3
k m f k
~ 4 2 0 4 2
C = o—_ —_— ——
4th Order 1 ¢ resr * T
c




TABLE F-II

COMPARISON OF THEORETICAL & SIMULATION RESULTS FOR

SINGLE AXIS RANDOM MOTION

(a) Exponent of Computational Frequency

Integration Scheme

Computational Frequency Region

1st order
2nd order

4th order

f >f1 f <f
c (o} c 0
Theoretical Simulation | Theoretical Simulation
Exponent Exponent (1) Exponent Exponent (2)
-1 -1 0 -
-2 -2 -1 -1.2to -1.9
-4 -3.7 -1 -1.3

(b) Exponent of Amplitude (¢) and Frequency Band (f,)
of the Random Motion for Second Order Integration

Error Amplitude Ratio

Computational Frequency Region

f >f f <f

c 0 c 0
Theoretical Simulation | Theoretical Simulation
Exponent Exponent (1) Exponent Exponent (2)

Exponent of f,

C(e = 0.55, 1, = 50)
C(d=0.55, f =100)
o

Exponent of ¢

C(e=1.1, £, = 50)
C(e=0.55, f, = 50)

(1) Not including the transition region from truncation to roundoff

(2) .11, <1, <1,




Again approximating the rate amplitude in terms of the power spectral density,
total drift rate is

_ f
c = = LICIY (F-26)

These equations are summarized for three integration schemes in Table F-III.
As before, the power spectral density in the above equations is that of the environ-
ment as seen by the computer after it is modified by gyro and sensor package trans-
fer functions,




TABLE F-III

COMPUTATIONAL ERROR FOR RANDOM VIBRATORY CONING MOTION

Integration Scheme fo/fC < .8 fo/fC > .8
- 327 1 - 8
Rectangular C = 5 f—f p(Haf
27 c T
fo
= -~ 730 f
and order RK G - 48 12f f¢(f & - —32~f 95—f(—)df
0 T . 8f
. 8f
4th order RK ¢ =

646 1 3
— 4ff ¢ () df
0
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APPENDIX G
DERIVATION OF SENSOR ASSOCIATED ERROR MODELS

A. Introduction

Several error sources in a strapdown system are associated with the sensors that
produce a distortion of the vehicle motion information that is passed on to the computer.,
These error sources must be treated on a system basis and they must reflect the im-
pact they have upon the error induced in the knowledge of attitude by the computer pro-
cessing erroneous data., Three such error sources, finite gyro bandwidth, unmatched
gyro loop frequency response and gyro output axis acceleration sensitivity, are dis-
cussed in this appendix and analytic models of the errors produced by each are
derived.

B. Strapdown System Navigation Errors due to the Finite Bandwidth of the Gyros

The finite bandwidth characteristics of the strapdown gyros cause two navigator
errors. First is the attenuation, beyond the bandwidth of the gyro, of the random
angular environment applied to the sensor package which represents true angular
motion of the accelerometer input axes that should be followed by the gyros in order
to correctly resolve the accelerometer outputs into the inertial frame. Second is the
error induced if vehicle coning motion occurs at frequencies beyond the bandwidth of
the gyros. The two sinusoidal rate components will be attenuated by the gyro loops and
not seen by the computer while the constant rate component (zero frequency) will be
passed on to the computer. This will result in a drift rate of the attitude reference
equal to the value of the constant rate component. In either case, the attitude compu-
tational process, even if it were perfect, cannot undo the error that has been created.
A method of evaluating the gyro amplitude attenuation errors has been developed and
is presented.

The mean square angular amplitude of the sensor package and hence of the

accelerometer's input axis in the presence of an ergodic random angular environment
that is defined by a power spectral density of angular rate is

«© IGS(jco)l2

52=1f

o e TG ¢ (o) dw (G-1)

where Gg is the structural transfer function between the gyros and the sensor package's
mounting surface in the vehicle and ¢ is the random angular rate power spectral density
at the mounting surface.



Because the gyros have a finite frequency range over which the input rate is per- *
fectly followed, the motion of the accelerometer's input axis over all frequencies will
not be precisely described by the gyro's output. Symbolizing the gyro's transfer function
by Gg, if the probability density function of ¢ is odd the maximum mean square angular
error in the system's knowledge of attitude due to the bandwidth limitation of the gyro is

IGS(jw)Iz
( w)2

2 1
€ =

0 ; 2
2 S oli-a,0 d

2T -0

¢ (jw) dw (G-2)

This mean square angular error is an uncertainty in knowledge of the angular
orientation of the accelerometer's input axis and as a result contributes an error in the
transformation of the accelerometer outputs from the vehicle to the inertial computational
frame during the thrusting phases. This error has components along the pitch and yaw
vehicle axes of magnitude:

2
AF = F ' €g (G-3)

where F is the applied specific force and AF the resulting error.
If we consider, as an example, an angular vibratory input that has a significant

amplitude that extends over a frequency band that is much wider than the gyro band-
width, the previous equation (G-2) can be approximated by

[* o]

2.1 1G_ G 12 ot
T W— ¢ (jw) dw

in which the input environment is integrated over the range from the gyro bandwidth
(@) to infinity. Note that the integration from minus to plus infinity was first replaced
by twice the integral from zero to infinity. If we further assume that the sensor package
has a transmissibility of unity, equation (G-4) becomes

]
1 .
G-=J 200 4, G-5)
“be U w)z

G-2
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Considering a constant power spectral density whose probability density function is
odd and evaluating the above integral yields

_ -0 1 % ¢ [
% - - — (G-6)
T W w TW 2 m f

For gyro bandwidths between 50 and 100 cps, the order of present designs, the
difference between a power spectral density integrated over a range from the gyro
bandwidth to 500, to 1000 or 2000 cps is negligible. To indicate the magnitude of maximum
errors that can occur, Figure G-1 shows the mean angular error as a function of power
spectral density amplitude and gyro bandwidth. To be compatible with knowledge of
the electrical and mechanical uncertainty in knowledge of the orientation of the sensor
input axes, this gyro bandwidth produced error should be of the order of 1 to 10
arc seconds depending upon the particular mission and operational procedure under con-
sideration.

To this point, the random angular motion has been assumed to be characterized by
an angular motion whose mean amplitude is zero and whose integrated effects produce
individual gyro cutputs whose mean value of angular rate is zero. The zero mean ang-
ular amplitude is a reasonable assumption as the sensor package is rigidly attached to
the vehicle. Whether the mean value of the gyro rate output is zero or some value
other than zero, depends upon the spatial orientation of the axis of rotation of the ran-
dom angular input with time. If the random angular axis of rotation moves with
respect to the sensor package with time, it can cause a gyro input axis to describe
closed contours in space such that the mean of the gyro output is other than zero.

A classical example of this motion is coning motion in which two out-of-phase
sinusoidal motions about two orthogonal axes causes an axis orthogonal to the two to
describe a cone in space.

For "coning" motions beyond the gyro bandwidth, the drift rate of the attitude
reference due to the finite gyro bandwidth would be

o0
w(drift rate) = L f [1-G ¢ o.))]2 . le(jw)l2¢(jw)ﬂn wdw
82 ey, ¢ (G-T)
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where Gg is the gyro transfer function, Gg the sensor package structural transfer
function, ¢ the power spectral density at the sensor package mounting point. This
equation was derived from the basic coning equation describing the magnitude of the
constant rate compontnt developed in Appendix F

*2
0% (f.
o(f) = S5 dj) (G-8)
4mf
i
where
.9 fl + Af
6°¢) = lim [ o (f) df (G-9)
! Af>0 f - Af
C. Unmatched Gyro Loop Transfer Functions

An analysis of the response of a triad of gyros in which each of the gyro loops has
a slightly different transfer function indicates that in the presence of an applied sinu-
soidal angular rate, whose axis of rotation is fixed relative to the sensor package and
has components on two or more input axes, an erroneous signal is created. This
erroneous output of the attitude reference sensors, even when processed in a perfect
computer, results in a constant drift of the computational reference frame. The drift
rate is a function of the amplitude and spatial orientation of the applied rate and the
phase difference of the gyro loop transfer functions between the gyros of the triad.

The effects to be described are presented for a two dimensional attitude reference
since the results are easily generalized to the case of three dimensions. This appendix
will consider a pair of gyro loops which sense rates in the x, y body plane. Let these
two gyro loops have slightly different transfer functions as illustrated in Figure G-2.
The difference in the amplitude response of the two loops is some € (f) and in the phase
response some & (f).

The remainder of this discussion will be concerned with the response at a single
frequency; therefore, for brevity of notation, the frequency dependency of € and 6 will be
dropped. It is, however, necessary that the frequency dependency of these terms be in-
cluded when performing an error analysis.

If a sinusoidal rate of the form w = « sin Bt is applied to the gyros in the x, y plane
along an axis whose orientation is fixed in space (see Figure G-3), the difference in the
transfer functions will produce a distortion of the applied motion.



x gyro =
y gyro = ————— ’
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Figure G-2 Postulated Differences in Gyro Transfer Functions

Figure G-3

w=qasin gt

Geometry of the Angular Rate Experienced
by the IMU
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The applied rate vector may be resolved along the two input axes and expressed

as:
o cos 0 sin Pt
w = @ sin @ sin Bt (G-10)
0

1., The Effect of Differences in Amplifude Response

In the case where the amplitude response of the two loops differs, the indicated
rate is a distorted version of the applied rate and may be represented as:

(L +€) acos 6 sin Pt
W = asin 6 sin Bt (G-11)
0

This may be written in polar form, dropping second order terms in € as:
o = a(l+e€ cos? 6) sin Bt 4(tan'1 [@-e¢)tan 9]) (G-12)

This is shown in Figure G-4,

DISTORTED RATE (w')

ACTUAL RATE (w)

Figure G-4 Distortion of the Original Motion Due to the Difference in Amplitude Response
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In this form it is easy to see that the effect of the different amplitude responses
is to change the magnitude and spatial orientation of the applied rate. Both the true
and distorted motion, however, cause the body to return to its initial orientation peri-
odically such that the error introduced into the computational frame is also periodic
and bounded,

2. The Effect of Differences in Phase Response

The difference, 6, between the phase of the transfer functions of the two gyros
will also cause the gyros to distort the applied rate. In this case the indicated rate will
be:

@' cos 0 sin Bt
W' =la'sin 6 sin (Bt + 6) (G-13)
0

where @' equals the applied rate (@) times the mean amplitude response of the loops at
the frequency of interest. The above equation may be written as:

@' (cos 0 - cos 0 sin &) sin Bt| + a'cos @ sin § sin Pt
w' =| @' sin 6 cos & sin Pt o' sin 0 sin & cos Pt (G-14)
0 0

The first term in this expression is an effect identical to that produced by the
difference in amplitude response and introduces a periodic, but bounded, error in the
computational reference. The second term, however, describes a constant rate vector
of magnitude @' sin 0 sin & rotating in the x, y plane at a rate P (See Figure G-5).

Y

1st TERM OF o'
ACTUAL RATE @

ﬁff o

X
OND TERM OF «' 4

Figure G-5 Component of w Introduced by the Differences in Phase Response
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A closed form solution of attitude equation [dit (T]Io) = T; Q] for this type of motion

shows that this will produce a constant drift of the computational frame (developed in
Appendix C) given by:

2
(o' sin 6) sin © cos ©

z (G-15)

-1
DoR. - 2

D. Gyro Output Axis Acceleration Sensitivity

A strapdown unit using single degree of freedom of gyros, when subjected to a
sinusoidal angular rate about an axis that projects a component on the input axis of one
gyro and the output axis of another gyro, outputs an erroneous angular rate vector. This
leads to a divergent error in the knowledge of attitude even with a perfect attitude com-
putational process. This is due to the sensitivity of single-degree-of-freedom gyros to
accelerations about the output axis. It is shown that this drift rate in the knowledge of
attitude is proportional to both the square of the amplitude of the sinusoidal rate and the
gyro's inertia to momentum ratio; the drift rate is independent of the frequency of the
input motion up to the bandwidth of the gyro.

Consider as an example, a strapdown unit in which the three gyros are mounted as
shown in Figure G-6; the input axes defining an orthogonal triad while the output axes are
such that two of them are parallel and the third perpendicular to these two.

Figure G-g Typical Configuration of Gyros in an Inertial Unit
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Now consider what happens if an arbitrary variable amplitude angular rate with a
fixed orientation in the body frame is applied to this triad of gryos. For convenience
of computation let this rate be applied along the y body axis:

o

w G-16
ap = [, (G-16)
0
The y gyro will of course indicate this rate; however, note that this rate also
appears along the output axis of the x gyro. As seen from the gyro block diagram

(Figure G-T), this causes the x gyro to indicate to the computer, an equivalent rate
about the x axis of:

<‘°/H ) % (G-17)

Hence for a vehicle motion described by:

(o)

w, = wy (G-18)

o

the gyro outputs indicate a different motion:

(10 /H> &y
b~ o (G-19)

o

This effect is absent for rates applied about the z body axis since (as seen in
Figure G-5) none of the gyro output axes are parallel to this axis. For rates applied
about the x body axis, however, the magnitude of the erroneous output is increased by
a factor of \’ 2 since both the y and z gyros have output axes parallel to the x body axis.

For the case of a sinusoidal rate applied to the unit (perhaps by control system)
limit cycles or vibration), @y can by expressed as

w = @sin Bt (G-20)

G-10
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and the true angular rate experienced by the vehicle is therefore:

(o]
wy =| @ sin Bt (G-21)

(o)

The unit, however, indicates an angular rate of:

(IO/H> aPcos Pt
©, = o sin Pt (G-22)

o
for all frequencies of the wy sinusoid less than the gyro bandwith,

The independence of the frequency of the motion extends to the gyro bandwidth
beyond which it is attenuated at a rate of 20 to 40 d.b. per decade depending upon the
loop design,

This erroneous rate (one of the class of coning motions considered in Appendix E)
causes a constant drift rate of the inertial reference. The magnitude of the drift rate is
equal to the solid angle described by the z body axis if it were in fact to be subjected to
the erroneous rate. As shown in Appendix E, the drift rate is:

DR =

o =

—IfY @2 rad/sec (G-23)

CR-968 NASA-Langley, 1968 —— 21 G-12
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former group, the error is predominately truncation error; for the latter computer,
it is predominately round-off error. Figure IV-26 replots the preceding data (plus
other data points not presented) as a function of integration time intervals for position
errors at the end of the first and sixth orbits. At the smaller integration intervals,
the round-off error dominates; at larger intervals, the truncation error is largest.

The effect of computer word length on the truncation and round-off processes
can also be seen in Figure IV-27 where the equivalent position error per integration
step is plotted as a function of the integration step interval. For the 30/30 computer,
the error is independent of integration interval below an integration interval of 30
seconds. This is characteristic of round-off error; beyond 30 seconds, the error
undergoes a transition to truncation. For the 22/44 and 44/44 computer, the range
investigated covers the regions in which truncation is the predominate error.
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V. HARDWARE APPLICATION STUDIES

A strapdown navigator, as inspected from the computational point of view,
consists of inertial sensors that measure components of linear and angular motion
which are coordinated by the computational process to define the complete system
motion in a vectorial sense, With the coupling of the inertial sensors occurring
only in the computer, the sensor loops are essentially independent, This allows
certain concepts to be implemented on the sensor level that are not required, are
not necessary or not permitted in a gimballed system. The application of these
concepts on a sensor level will result in maximizing the mission capability of
strapdown navigators. The following areas have been considered and are
discussed in this section, The additional computational requirements to implement
these concepts are outlined and are shown to be small.

1. The shifting of the dynamic operating range of torque-rebalanced sensors
as a function of the level of environment during each phase of flight (boost, free-
flight, midcourse corrections and terminal corrections, etc.) to improve perfor-
mance and reduce power during periods of low environments,

2. The asynchronous sampling of restrained gyros and their data
resynchronization by a general purpose computer to reduce the weight of the
interface electronics between the sensors and computer that are required to store
the pulse sum from each sensor until the computer requires the data.

3. Applying redundancy at the sensor level rather than at the inertial measure-
ment unit level to improve system reliability. (Employing redundancyon a sensor
level as opposed to a system level results in the same reliability, but requires
fewer sensors and thus less weight, or conversely, higher reliability for the same
weight).

A, Shifting Dynamic Range

A strapdown inertial navigator must always be designed to perform to a
desired level of accuracy under the most severe linear and angular environments
anticipated during flight, This includes the scaling of the maximum output from
inertial sensors and the scaling of the computer word length and its computational
rate for the maximum linear and angular motions. For multiple level environment
missions, rescaling of the strapdown inertial navigator for the different
environments will permit the achievement of either improved performance or lower
power during the periods of low level environments. This may result in a decrease
of the overall vehicle weight from the system's standpoint because propellant
weight in future midcourse or terminal maneuvers will be saved due to the in-
creased navigational accuracy and the decrease in power will reduce the weight of
the device used to store or generate power for the strapdown navigator. The
techniques, requirements and trade-offs for shifting the dynamic range of re-



strained torque rebalanced inertial sensor loops and a general purpose computer
are discussed in the following sections.

1., Gyro Sensor Loop

A restrained, torque-rebalanced sensor loop consists of the gyro and
its permanent magnet torquer and control electronics that supply the correct
amount of current to the torquer to counteract the torque produced by the angular
rate along the gyro's input axis, The magnitude of the maximum current, i,
required is proportional to the product of the maximum value of angular rate, w,
and the angular momentum of the rotor, H:

i = kHw

Typical torque rebalanced electronics however do not vary the magnitude of
the retorquing current in proportion to the applied rate because it is very
difficult to maintain an accurate value of current over a large dynamic range.
Rather, a single precisely controlled level of current is employed. The time over
which the current is applied is modulated, alternating between plus and minus, so as
to maintain the integral of current over time equal to the integral of the torque
created by angular rate over time:

fidt =kacudt

Several examples of these schemes are presented in Appendix A,

The two variables that can be used to readily change the scaling of the gyro
loop's dynamic range in flight are: (1) the magnitude of the level of current used in
rebalancing the gyro loop and (2) the magnitude of the rotor's angular momentum
achieved by varying the rotor speed, The variations and trade-offs in power,
performance and maximum rate capability can be observed in terms of ratios or
percentage changes referenced against a gyro operating at a given set of
conditions denoted by a superscript one. Linear relationships between power,
performance and maximum angular rate are presented below, Nonlinearities have
not been considered because their behavior is not general but rather is associated
with particular designs and the components selected to implement the design concept.

Rotor Power - A majority of gyro spin motors operate at nearly constant
current such that the voltage hence the power is proportional to the rotor speed (@)

1

(Power)ROtor H__l
0

o
(Power)Ro tor H o




Retorquing Power - The retorquing power is proportional to the square of
the current, thus it is proportional to the square of the change in angular momentum
and maximum angular rate

’ 1 1 2 2
p
( oWer)Retorquing _ WMa,x H1

0 1 0 Pl
(Power) H

Retorquing WMax
For most torquer designs there is a maximum power input after which the torquer
efficiency decreases and the relationship becomes highly non-linear,

Gyro Bias and Mass Unbalance - The gyro bias and unbalance error coefficients
are inversely proportional to the rotor's angular momentum and are independent of

the retorquing electronics

1 0
B 1 0

Zeyro | U _ om0 | POVNpeey
0 0 1 1

B U H

gyro (Power)Rotor

Retorquing Electronics Bias - The equivalent bias error in the retorquing
electronics is due to differences in the magnitude of the plus and minus current
levels over the basic pulsing limit cycle period (Appendix A). Over reasonable
ranges of current variation, the difference between the two levels of current for
most designs is proportional to the absolute value of current level

B1 . il (Power)1 .
electronics _ max retorquing
0 -0 - 0

i P
electronics max ( 0Wer)retorquing

Sensor Loop Scale Factor - The scale factor error of the gyro and the
retorquing electronics are essentially independent of the variation in angular
momentum and retorquing current level.

The most severe environments for which strapdown navigators must be
designed occur during periods of thrusting, For the gyros, there may also be
periods of desired high angular rates during nonthrusting phases of flight. For
the more serene environments, the above equations demonstrate one of the
following:

1. Improved sensor loop performance is obtained with lower power by

reducing the retorquing current level to a value that will handle
anticipated rate environments,
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2. A further improved sensor loop performance is obtained for the same
power by reducing the retorquing current while increasing the angular
momentum of the rotor by the amount of power deleted from the
retorquing process.,

In order to change the retorquing current level or wheel speed, the strapdown
inertial navigator's computer must be able to control switching functions external
to the computer; the computer must be able to change conditions from one precise
condition to another precise known condition. To change gyro wheel speed, the
computer must control changes in the power supply's rotor speed excitation
frequency. To change retorquing current level over wide dynamic ranges, it is
necessary to be able to select different resistors or their equivalent in the current
level control circuitry.

In order to change gyro rotor speed with minimum system error, it is
necessary that the angular rates at the time of switching be small in order to
minimize the error associated with the uncertainty in gyro scale factor during the
transient spin up and spin down period, which is in the order of ten to twenty
seconds. The alternative to using low rates during the transient period is to use
stellar observations to correct the attitude inertial reference after the change in
wheel speed has been accomplished. In contrast, the change in retorquing current
levels can be made in less than a millisecond,

2. Accelerometer Sensor Loop

The pulse torquing rebalancing concepts applied to accelerometers are
identical to those used in the gyro sensor loops. In the accelerometer loop,
the pendulousity, the pendulous mass times the moment arm, cannot be varied as
is the angular momentum in the gyro. Therefore, the only item that can be used
to change accelerometer dynamic range is the retorquing current level. The re-
torquing power required is again proportional to the square of the maximum level
of acceleration that the loop must measure. For the accelerometer loops, the
electronic equivalent bias is proportional to the maximum acceleration (current)
level and the scale factor of the entire loop is insensitive to the maximum
acceleration (current) level. The change of levels is accomplished quite rapidly
and accurately during nonthrusting phases.

3. Strapdown Computational Process

The shifting of the dynamic range of the attitude and position computational
processes in a general purpose computer for serene space environments requires
only the decreasing of the computational frequency (the increasing of the size of
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the integration interval). The computational frequency is reduced so as to place
the errors created by the attitude and position computational processes in the
transition region between round-off and truncation for the lower environmental
levels. (The same design philosophy is also used in the design of the computational
processes for the environment encountered during all flight phases including
boost.) This simple change in the computational frequency lowers the computational
error from that occurring during periods of high level environment flight that use
the same computer word length. The lower computational frequency also reduces
the duty cycle of the computer that in turn reduces the average power required to
operate, access and read the memory. Using longer computer word lengths or

its equivalent, double precision computations, and higher order integration schemes
to further reduce the attitude and position computational errors is usually not
necessary; the lowering of the attitude computational frequency is sufficient to
maintain the computational error below the gyro errors even when the latter are
rescaled to improve performance, In order to accommodate the change in sensor
scaling, discussed in the previous section, the computational process must simply
select a new set of sensor compensation terms (scale factor, bias and for
thrusting, unbalance) from its data memory.

The additional computational functions to change the scaling of the navigator
are negligible compared to the basic computational routines. A few program in-
structions are required to implement the logic decisions as to when the dynamic
range is to be changed. A few data memory locations are required to store the addi-
tional sensor compensation coefficients,

B. Sequential Sensor Sampling and Resynchronization

A strapdown sensor unit operating in conjunction with a general purpose
computer requires an interface unit which stores or holds the output from each
sensor until the computer is able to accept the data, To provide synchronized
sensor data, which is of primary importance for restrained sensors, a holding
register for each sensor is required in the interface module, The availability of
holding registers permits shifting of the data from all sensors into the interface
module on the occurrence of a single synchronizing pulse and the reading of the
data from the interface module by the computer in a sequential manner through a
single input/output channel,

If sensor data were not transferred simuitaneously from the sensor to the
interface module, but rather sequentially, only one common holding register would
be required. This would substantially reduce the number of components, size and
weight of the interface module, However, computer logic would then have to
provide a means of resynchronizing the sensor data prior to processing in the
manner discussed in Appendix B. If the resynchronization is neglected, the re-
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sulting error due to the phase shifted data will behave in an identical manner to that
due to sensor quantization. The strapdown attitude computational process has been
examined to determine the characteristics of the data resynchronization process.

The strapdown attitude computational process must numerically integrate nine
differential equations

d/dt [T] = [T][Q]

where [T] is the 3 x 3 direction cosine attitude matrix defining the transformation
from the rotating to a fixed coordinate system, and where [ Q] is a skew-
symmetric matrix whose elements are components of angular rate measured in the
rotating frame (see Appendix B). To numerically integrate these equations,
measurements of components of angular rate are required at particular points with-
in the integration interval, Techniques to extract rates accurately from three gyro
outputs have been developed and discussed in Section IV, Such a scheme for
synchronized (in time) sampling of the triad of gyros that yields rate estimate accuracy
compatible with a 4th order Runge-Kutta algorithm has been developed,

If the acceptable computational accuracy could be obtained with the gyro
outputs available asynchronous in time, the number of static registers for the gyros
could be reduced from three to one. A schematic of the time of sensor data
availability and integration intervals for a fourth order integration process with
asynchronous sampling is

f
i
3

| i | | ! Gyro 1
| | | | 1 Gyro 2 Sampling
M "_ Times
| ! ! ! |
oM I‘_ Gyro 3

This figure shows the sampling of the gyros displaced by a time increment M,
to be used in an integration inverval of size At. For a 4th order integration process
it is necessary that estimates of the components of angular rate at the beginning,
midpoint and end of the integration interval be formulated (as before with synchronous

V-6




outputs) with accuracy sufficient to preserve the accuracy of the fourth order inte-
gration process.

One way to approach the problem is touse the gyro data samplings that are
unsynchronized with respect to the integration interval to estimate the gyro outputs
that would have been obtained if the gyros were sampled at the midpoint and end of
the integration interval. These estimated gyro outputs can then be processed to
extract rates by the aforementioned gyro data processing equations.

Such a resynchronization process is schematically described below. The time
relationship between the integration process, the sampled gyro outputs ( A6) of the
ith sensor and the estimate of the gyro outputs (A8') that would have been obtained if
the sensor had been sampled synchronously in time with the integration process are
also shown.

n-1 n n
- At

m1 —Zp] w3 pa—

et__ﬁ{ °2) so

2 —» M Id—— — nl-‘_
Aez (n-1) XD AGS (n-1) L Aezn | Aegn N
I gD i 1 1
Ae'zln Ae3n

i
A
K

The equations and process for obtaining the synchronized gyro estimates are:

Given: Gyro outputs every h/2 period of time that lag the
beginning and midpoint of the integration interval by
M time period.

Derive: [Estimates of gyro outputs over the first and second half

of the integration intervals to be used with the standard
rate extraction equations.
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Procedures:

1. Describe © as a second order Polynomial in time over
the time period of Aezn and Ae?,n

2
6 (Hh=at+bt
n n n

1
a,=- (38r o, -
n h(A 2nA63n)

b == -
n 2 (Ae3n Ae2n)
h
2. Estimate the gyro outputs during the first and second halves of
the integration interval
h/2-M
[ — *
Ae211 en lO + Aen_l
h-M
' =
AeSn en |n_/ 2-M
h
* =
Ae7 en 'h—M

In initiating the process, Aen 1 can be assumed to be
= a . M
AGLy = n
3. Apply present rate extraction equation (presented by Appendix B)
utilizing

AO !
21 and Ae3n

4, Repeat for the other two gyros.

Digital simulations have been run to evaluate this process and have demon-
strated accuracies compatible with the fourth order integration algorithm
employed. A coning type motion was used in these simulations since it represents
one of the most difficult motions for the computer to follow. The errors introduced
by the asynchronous sampling were small and it was necessary to use rather
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large delay times (M = 20 and 40 millisec) to separate it from the normal truncation
errors. Figure V- presents the total computational error for the employed coning
motion, The two cases run with the resynchronization of asynchronized gyro
samplings using the aforementioned resynchronization process can be compared with
the case of synchronous gyro samplings, The principle effects of resynchronizing
asynchronous samplings is to modify the transition region from round-off to
truncation and to increase the trunction error by a constant factor. It is seen from
Figure V-1 that the resynchronization error is a function of the fifth power of the
frequency ratio (the same as the truncation error), Figure V-2 presents the
additional error introduced above the truncation error by the resynchronization
process. This figure was obtained by subtracting from the 20 millisecond
asynchronized sampling curve the synchronized sampling error curve of Figure V-1,
Also shown are data for two different amplitudes of vehicle motion. The data of
Figure V-2 demonstrate that the error in resynchronization is proportional to the
square of the angular motion amplitude. Table V-I tabulates the resynchronization
errors for the two different asynchronization time intervals employed. It is shown
in this table that the resynchronization error is directly proportional to the
magnitudes of the asynchronization period. These results can be analytically des-
cribed by the following error model

Drift rate - KM 62 (f/fc)5
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Figure V-1 Computational Error with Resynchronization of
Asynchronized Gyro Samplings
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Figure V-2 Sensor Data Resynchronization Error for Coning Motion
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TABLE V-I

SUMMARY OF RESYNCHRONIZATION DATA

Resynchronization Error

arc sec/step

arc sec/step

o At w for for
(rad/cps) (sec) (rad/sec) wAt M = 0,02 sec M = 0. 04 sec
0.096 1 1.57 1.57 7.68x 10 1.42 x 100
1 0.785 0.785 2.36x 107 4,35 x 1071
1 0.392 0.392 7.66%107° 1.92 x 1072
0.5 1.57 0.785 4.33x 107 7.75x 107"
0.25 1.57 0.396 3.07x 1072 ——-

0. 005 1 1.57 1.57 2.13x 1072 4.26 x 1072
1 0.785 0.1785 1.37x10°° 3.48 x 107
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+ C. Redundancy

Physical redundancy is an effective means of extending space guidance system
reliability design goals to levels that are not attainable with state-of-the-art technol -
ogy. Therefore, redundancy may be considered as a stop gap, achieved at the expense
of other system parameters, to strengthen the weakest links of the guidance system
until advanced technology can provide critical items with improved reliability charac-
teristics so as to negate the need for redundancy. The implementation of a redundant
guidance configuration requires that certain basic technological ideas be considered.
Among these are:

1. A decision defining the type of redundancy to be used and the level
at which redundancy is to be established.

2. The ability to detect failure and to correct the malfunction by switching
to a redundant unit without permanent loss of the entire system.

3. The trade-offs of system performance, computer requirements, weight,
power, volume, etc., associated with redundancy.

The following paragraphs examine the above considerations as related to the
inertial sensors of a strapdown navigator for extended duration space mission
applications. It is assumed that the strapdown navigator will be used in conjunction
with and receive support from additional spaceborne sensors to provide the basic
data needed for navigation, guidance and control functions for these missions. The
availability of data external to the inertial navigator will be shown to be critical to
isolate "failures' caused by the inertial sensors being out of performance specifica-
tion. However, physical failures can be detected completely within the inertial
navigator. The following sections discuss reliability factors, performance, and failure
detection functions.

1. Reliability

The failure rate of a system is a measure of the anticipated reliability of the
unit when operating under an environment and duty cycle specified for a particular
mission. Failure rate estimates are obtained by summing the failure rates of the
piece parts that comprise the system, The failure rate of several strapdown sensor
package designs of the restrained sensor class for a fairly broad range of missions
have been averaged to obtain a representative nondimensionalized failure rate break-
down at the subsystem level assuming that all subsystems are continuously operating.
This breakdown is shown in Table V-II. The data presented is a good example of the
reliability apportionment attained between the subassemblies of the strapdown sensor
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TABLE V-TI

NONDIMENSIONAL FAILURE RATE ANALYSIS SUMMARY

No. of

Subassembly Parts Nondimensional Failure Rate
Gyro Group

Gyro 3 . 5440

Retorquing Electronics 3 .0822
Sub Total . 6262
Accelerometer Group

Accelerometer 3 . 1511

Retorquing Electronics 3 .1033
Sub Total .2544
Auxiliary Electronics

Frequency Countdown 1 .0368

Temperature Control 1 . 0168

Crystal Oscillator and

Electronics
Sub Total .0536
Power Supply 1 .0658
Total 1.0000
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package using current technology. As would be expected, the sensors because of their
mechanical nature are most subject to failure. The relative contribution of acceler-
ometer loops in a reliability budget for an extended space mission, however, would be
considerably less than that shown in Table V-II. The accelerometers and the tempera-
ture controlling of the sensor package would be designed to allow the accelerometers
to be turned off except during thrusting periods (including boost, transfer maneuvers,
trajectory corrections, orbit keeping etc.). Thus operating time is very small com-
pared to the total mission time. Survival of the boost phase of the mission can be vir-
tually assured by the use of high probable -lifetime components and proper system de-
sign and installation, Once in space, thrusting periods are infrequent so that the
accelerometers can be shutdown for periods when not needed, Available data indicates
that repeated reactivation of the accelerometers does not increase their failure rates
above that stated in Table V-II. Thus, the duty cycle of the accelerometers compared
to that of the gyros, which must operate over longer periods of time (if not for the
entire mission) fo maintain the inertial reference, is so small that the reliability of
the accelerometer loops have a small effect upon the reliability of the inertial sensor
package for extended space missions. Therefore, the most significant modification
that can be made to improve reliability is the improvement of gyro loop reliability.
Assuming that the most reliable gyros available would be selected for use in extended
space missions, further improvements can be achieved only by providing gyro
redundancy.

Gyro sensor redundancy can be implemented in several ways. The alternatives
considered in this study are shown in Figure V-3, Without redundancy the basic
sensor gyro triad can be operationally represented as a serial device; a failure of any
one gyro causes a system breakdown. The most obvious approach to sensor redundancy
is to provide a second set of three gyros oriented parallel to the first which can be
used if a failure occurs in the primary set. The redundant triad could be substituted,
either as a complete set (serial-parallel configurations, Figure V-3) or individually
(parallel-cross-strapped configurations, Figure V-3) when a failure occurs, For
cross-strapped configurations, each gyro in the redundant set provides a backup for
a specific gyro in the primary set; therefore, as many as three discrete failures
(but only one along each axis of the triad) can be tolerated using a cross-strapped
configuration whereas only one can be tolerated in a serial-parallel configuration
(substituting on a system basis) before a complete system breakdown occurs. In either
the serial-parallel or the cross-strapped arrangements, the redundant sensors can be
maintained in either an operative or a standby mode.

Another approach to gyro redundancy is to utilize a single redundant sensor to
provide backup for all the gyros in the primary set. In order to accomplish this,
the gyro must be oriented so that its sensitive axis does not coincide with that of any
gyro in the basis triad (the necessary mathematics to resolve the output of the gyro
into the coordinate reference frame of the primary set must be provided in the strap-
down navigator). The singular redundant gyro may also be kept in either an operative
or standby mode. This approach may be extended even further by using three additional
backup sensors each of which is capable of backing up any one of the three sensors of
the primary system (Figure V-3).
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Figure V-3 Redundant Gyro Configuration Functional Schematic
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The improvement in reliability of the gyro sensor loops, considered collectively
as a contributing element of overall reliability, has been evaluated parametrically
for each of the aforementioned redundant configurations under the following

assumptions:

1. The gyros exhibit an exponential failure distribution (i.e., the gyros are
operating after run in and before wear exerts an apparent influence on

failure rate).

2. The basic gyro and torquing electronic reliability, whether a primary of
or redundant sensor, is the same for each element within the configuration,

Figure V-4 presents the probability of success of redundant configurations as
a function of the probability of success of a nonredundant triad.

Of the configurations considered, the multiple gyro redundancy mechanization
yields the largest increase in gyro system reliability; the standby mode, of course,
provides the higher reliability of the two operating modes. For this configuration,
three failures of any gyros either in the basic triad or the redundant group can be
tolerated.

The completely redundant cross-strapped mechanization vields the next highest
increase in gyro system reliability; the standby mode again producing the higher
reliability of the two operational modes. For this system up to three failures in the
systems, but a maximum of one along any axis of the triad, can be tolerated.

Both the multiple gyro redundancy and the cross-strapped gyro mechanizations
are most applicable for strapdown systems. In a gimballed system, the size and
weight penalties that result from implementation of these arrangements are very
large because all sensors must be put on the cluster inside the gimbals, Usually a
gimballed inertial unit employs redundancy on a system level as in the serial redundancy
mechanization,

Serial system redundancy provides a substantial improvement in overall reli-
ability but not as much as the two previous configurations because the serial system
redundancy can only tolerate a single failure. The single gyro redundancy mechanization
in fact provides a higher reliability in the operating mode than does the serial system
mechanization in the operating mode because there are fewer elements in
the single gyro redundant system. In the standby mode, both the single redundant gyro
and the system-serial mechanization offer about the same reliability.

V-17



§§900Ng UOTISSIIN JO A}I[IqeqOoId Uo Aouepunpay Jo 3109JJd $- A oIndrg

peraj o1sBq - SSIDONS A0 ALTTIIVIO¥d
0°T 6°0 8°0 L°0 9

1o}
.
e

XAANVLIS - AONVANNAIY OYAD ATdILTIAN ~ 8
ONILVYAJO - AONVANNAIYH O¥AD ATJILTANN ~ 4
AANVLIS - AONVANAJITY O¥AD TTONIS ~ 9
ONILVEAJO - ADVANNAHTY O¥AD JATONIS - &
XGANVIS - AVHLS-SSO™O -~ ADNVANAQIY WIALSAS ~ ¢

T  DONILVHAJO - dVHLS~SSOYD - ADNVANNATY WALSAS = €
XAANVIS - TVIHIS - AONVANNATY WHILSAS - ¢
ONILVEIJO - TVIYdS - AONVANAQIY WALSAS = 1

®)

@

pd
&%
—

AR

L0

8°0

6°0

UOTIBANSIUOD JWBpUNPdI — SSHOONS A0 ALITIIVHOUd

V-18




TR T T T, iy

The effect on probability of success (that the gyros operate for the mission
duration) using either the single or multiple gyro redundancy approach, the preferred
approach for strapdown systems, is extremely large. Figure V-5 depicts probability
of success versus time for various mean time between failures. Assuming a triad of
gyros of 10, 000 hours MTBF and a mission time of a year, the probability of success
is about 0.5, Using a single redundant gyro in the standby mode raises the probability
of success to 0,85, For three redundancy gyros, the probability of success is 0,994,

Although the multiple redundant gyro system offers the highest reliability of
the configurations studied, the singularly redundant gyro offers reliability that is
sufficient for many missions plus the advantages in power and weight savings. The
three gyros and torquing electronics of the inertial sensor unit typically comprise 25
percent of the total unit weight. To add three additional gyros with matched torquing
electronics to this envelope would increase unit weight by 40 to 45 percent allowing
for associated increases in structure, insulation, etc. whereas system weight would be
increased by 15 to 20 percent if a single gyro torquing electronics were added. The
additional power required for thermal control of each additional gyro requirement of
the original triad in the standby mode is 1 percent of the basic power. An increase
of approximately 10 percent in the maximum power input to the basic unit is required
to maintain each additional gyro in an operating mode., Operating all gyros continu-
ously requires increased power over standby conditions and reduces reliability but
continuous operation does offer the ability to switch from primary to backup gyros
without requiring a period of time for the sensors to reach a condition of stable opera-
tion. With power and reliability continuing to remain critical factors for extended
duration missions, standby operation appears to be the favorable mode of operation
other than during critical phases of the mission such as midcourse corrections and
terminal maneuvers.

2. Performance

The performance of the singularly redundant gyro configuration has been studied,
both from the standpoint of using the fourth gyro to provide redundant information to
improve the accuracy of a properly operating basic triad and from the standpoint of
determining the accuracy of the system after the redundant gyro has replaced a failed
unit in the primary triad. (The approach applies equally to the multiple redundant
gyro system.) As previously pointed out, the redundant sensor must be skewed with
respect to each of the primary gyro input axes. Three such configurations illustrated
in Figure V-6 were selected for study. The reference c anfiguration on which the per-
formance of all other combinations is based is assumed to be an orthogonal triad with
input axes coincident with a body reference coordinate frame. The first redundant con-
figuration places the fourth gyro on a diagonal of the basic system. The second redun-
dant configuration utilizes gyros positioned along diagonals in each quadrant of the
reference coordinate system so that no sensor axis is coincident with the body reference
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coordinate axes. The third configuration is similar to the second except that the gyro '
input axes are placed along equally spaced elements of a right circular cone.

With each of the above configurations the angular rate about any one of the body
reference axes can be calculated with the output of any of the three gyros. Geometrical
expressions for translating sensed gyro rates to computed body axis rates for each of
the above redundant configurations are shown in Figure V-6, The redundant data
provided by a fourth gyro permits body angular rates to be calculated by means of two
alternate expressions for each assignment if all gyros are operating. Thus, perfor-
mance improvements attained by averaging the two pieces of redundant data made
available by operating all four gyros simultaneously should be achieved by averaging.
The computer requirements for performing this averaging sequence are shown in
Figure V-6 and are small, Averaging, of course, cannot be performed when one
gyro has failed. When a gyro has failed the alternate calculation of rate still exists.

Performance analyses have shown that modest accuracy improvements can be
achieved by using a fourth gyro to provide redundant sensor information. The quali-
tative measure of system accuracy used in these studies for both redundant informa-
tion and replacement modes of operation is the root-sum-square (RSS) value of the
errors appearing on each of the reference coordinate axes. The apparent errors on the
coordinate axes are comprised of individual sensor errors which are combined geo -
metrically in accordance with the previously discussed rate expressions shown in
Figure V-6, Non-thrusting orbital motion has been assumed so that only the bias (B), scale
factor (SF) and input axis (which can be treated as a scale factor error) error terms can
be considered. Appropriate expressions for the resultant system error vector are
presented in Figure V-6.

The performance of the redundant configuration is affected by the manner in
which the maximum angular rate environment for a particular mission occurs. For exam-
ple, all gyros could be scaled the same to meet a rate environment specified such that
""the instantaneous rate about an arbitrary axis shall not exceed a specified value'.

If, however, the rate environment is specified such that maximum rates about each
coordinate reference axis can be imposed simultaneously, one or more of the gyros
(as appropriate) used in the reference basic triad capable of following the motion must
be rescaled in order to follow the larger resultant angular motion which exists about
axes that are not principal body axes, A given strapdown gyro can be rescaled to
follow higher angular rates but usually only with an appropriate growth of the instru-
ment errors.,

Expressions for the system error vector for both maximum rate specifications

are presented in Figure V-6 for both redundant information and replacement modes
of operation,
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Table V-III summarizes a comparison of the performance of normal and appro-
priately rescaled redundant gyro systems with the performance achieved by the refer-
ence triad considering bias errors only. The performance figure of merit is the per-
formance of the noted configuration divided by the performance of the basic triad.

The performance figure of merit operating under each of the four conditions is strongly
affected by the goemetry of the sensor arrangement and the angular rate specification,
(None of these arrangements are proposed to be optimum. They are simply cases

that have been selected to study the variations in performance.)

TABLE V-III

REDUNDANT SENSOR PERFORMANCE SUMMARY

CONFIGURATION ERROR BASIC TRIAD ERROR

REDUNDANT OPERATION REPLACEMENT OPERATION

Normal ¥** Appropriate** Normal *** Appropriate**
Configuration Gyro Scaling Gyro Rescaled Gyro Scaling Gyro Rescaled

Basic Triad 1.00 NA* - -
#1 1.224 1,732 1.523 2,08
#2 .866 1.502 1.223 2.110
#3 .912 1.825 1.292 2.585

* Rescaling not required
** Maximum angular rate components about all three axes simultaneously

*** Maximum angular rate about any arbitrary body axis

3. Failure Detection

Implicit in the concept of redundancy is the ability to sense and isolate com-
ponent failures, Gyro failures may be categorized into two types:

1. Sudden, catastrophic failures rendering the sensor completely inoperative.

9. Partial failures, either sudden or gradual, which degrade the performance
of the unit to an unacceptable level.
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Complete or sudden failure of the gyro can usually be traced to a mechanical or elec-
trical breakdown within the gyro or its torquing electronics, Experience with gyro
failures indicates that this type of failure can be effectively detected by monitoring
critical parameters, such as wheel speed (by means of a Spin Motor Rotation Detection
device) or the torquing electronics output pulse train, in serene environments,

With this type of monitoring technique, the identity of the failed unit is determined
directly. The computer switching logic required to monitor and mathematically im -
plement the substitution of the redundant unit into the configuration is very small as
compared to the requirements of the total system., Catastrophic failures by their
nature usually are impossible to detect before they happen so that some means of
reinitializing the inertial attitude reference must be provided. External data is
needed to update attitude errors accrued during periods when the gyro system is inoper-
ative, This data can be provided by stellar measurements.

Partial gyro failures are more difficult to isolate than complete failures. A
method of determining if a partial failure has occurred is to compare the two alter -
nate methods of computing angular rates (Figure V-6) by periodically running all
redundant gyros along with the basic triad. If the computed rates do not agree within
a predetermined tolerance, it can be assumed that a failure has occurred. The tech-
nique, to this point, does not require the use of any information external to the system.
However, due to the cross-coupling between the body rate equations, it is impossible
to isolate the failure without the use of additional data. Consequently, if a failure
has been detected, external information must be used to complete the diagnosis.
Stellar trimming or similar procedure for updating gyro bias is one technique to pro-
vide this information. If the gyro drift error established by two successive stellar
measurements exceeds a pre-established schedule, this can be interpreted as a prob-
able failure of that unit and the appropriate substitution can be made and the system
reinitialized.

It should be noted also that partial gyro failures through performance degradation
of the basic triad can be ascertained directly from information derived from stellar
measurements if they are periodically performed as a matter of course throughout
the mission. This prospect offers the advantage of eliminating the need to periodic-
ally activate the redundant gyros.

V-2k




VI. COMPUTATIONAL REQUIREMENTS STUDY

In conjunction with the development of analytic models of the computational
errors associated with strapdown navigation systems, a digital computer program
has been developed which employs these error models to evaluate the effect of the
computational process upon attitude, velocity and position accuracy throughout the
mission. The previous section and the appendices of this volume describe these
computational error models and the second volume of this report describes the digital
program and its use. This section evaluates the computational requirements of a
restrained strapdown navigation system for a translunar mission and phases thereof.
The translunar mission consists of the following phases: boost, injection into a
parking orbit, coast and injection onto the translunar trajectory. These phases of
the mission apply equally as well to many other space missions. Similarily, they
share assumed flight environments encompassing a wide range of launch vehicles.

The first part of this section discusses the error sources and tradeoffs that
exist between the sensors and computational processes in the presence of a dynamic
environment. Both the sensor and computational processes must be considered simul-
taneously in a system design process as they process the same data in a serial fashion.
The next part defines the flight environments assumed for this study. The final section
presents a parametric evaluation of the computational error in terms of computational
and computer characteristics. The results presented should be viewed as an example
and a guideline rather than as a broad, generalized projection of future computer require-
ments because of the strong, critical interaction that exists between the vehicle vibra-

tory environment, the structural characteristics of the sensor package mounting shelf,
the sensor loop frequency response characteristics and the computational process.

A. System Error Analysis

A strapdown navigator during thrusting phases of flight requires the coordi-
nated operation of gyro and accelerometer sensors in conjunction with a computa-
tional process to accomplish the navigation function. As usually mechanized, the
computational process for a restrained sensor system is

P e g

which is intended to approximate

v =/<F——Ig71) dt

VI-1



-

In these equations v represents velocity, Tg the attitude of the vehicle relative to
the inertial computational frame, [ w] is the rate matrix describing the inertial
attitude of the vehicle, F is specific force and g is gravitational acceleration. The
sequential coupling of the sensors and computational process in implementing this
navigation process is shown functionally in the top section of Figure VI-1. The
bottom section of the same figure displays the coupling between the flight environ-
ment and the errors in the navigation process.

The objective of navigation system performance design is to achieve a given
level of performance for a specified flight environment within one or more other
system constraints, i.e., reliability, cost, weight, power, etc. Sometimes the
converse problem is posed: optimize performance for specified reliability, weight,
power, etc. In achieving this objective, the entire navigation process must be
simultaneously considered and analyzed. An error allocation or budget must be
formulated considering the relative significance of individual error sources upon
both total mission performance and the physical characteristics of the system.

The evaluation of navigation performance requirements (sensors plus computational)
requires a specification of the flight environment, the desired system performance
and the determination of the weighting factors between component performance
requirements and the total system's physical characteristics.

In a subsequent section the computational requirements versus accuracy for
an assumed flight environment and sensor characteristics are parametrically
presented. In order to place the assumptions in proper perspective all the navi-
gation system error sources and their interactions are summarized in the following
paragraphs.

With reference to Figure VI-1, the flight environment to which the system is
subjected is usually specified at the mounting structure to which the inertial sensor
package is attached. The environment consists of: (1) zero or low frequency angular
motions associated with vehicle control and its flexible bending modes, (2) linear
acceleration associated with the main propulsion unit, and (3) both linear and angular
vibratory motion distributed over the frequency spectrum, arising principally from
the main propulsion unit. The task of the navigation system is to sense the angular
and linear motion applied to it and to compute its attitude, velocity and position.

By reason of its mechanical attachment to the vehicle, these data are also an
excellent estimate of vehicle conditions. In Figure VI-1, the angular and linear
flight environments are transferred to the sensors through the sensor package
attachment structure and the sensor housing structure itself (Boxes 1 & 2). The
mechanical design of the sensor package attachment and housing structure there-
fore are an integral part of the performance analysis and design of the system. The
attachment structure may be hard or soft (shock mounts or a vibration isolation
system), while the sensor housing should be stiff. A rigid sensor housing is desired

VI-2
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to preserve the mechanical alignment between sensor input axes and the sensor
package reference orthogonal coordinate frame to which all data is resolved prior
to computing attitude and resolving accelerometer data into the inertial computa-
tional frame. It is functionally indicated in this figure that the attachment and
housing structures can translate a linear environment into both linear and angular
motion as seen by the sensors: Similarily angular motion can be translated into
both linear and angular motion.

In addition to the typically treated sensor errors - the zero frequency quasi-
steady errors of bias, scale factor, rectification, etc., denoted in boxes labeled
3 and 4, there exists and additional group of errors that arise through the distortion
of the true signal by the sensor due to its finite frequency response, both phase
and amplitude (Box 5). These errors arise in the presence of correlated angular
and linear motion input to more than one inertial sensor. Examples are: (1)
unmatched phase response between the gyro triad that result in an unbounded attitude
drift rate for sinusoidal inputs having components on more than one gyro input axis
and (2) unmatched frequency response (both amplitude and phase) between the gyros
and accelerometers, that result in unbounded velocity drift rate. These errors
cannot, however, be considered alone; these errors can be amplified or attenuated
by the attitude and coordinate conversion process (Boxes 7 and 9) depending upon the
frequency of the output signal and the frequency of the computation. Ref 12 describes
these errors, their models and the characteristics of the interaction in detail.

In Box 6, the attitude computational errors of truncation and roundoff are
represented. As described in Section IV, these errors are affected by the computer
and computational characteristics and the angular motion passed onto the computa-
tional process by the gyros. Of predominant importance is the gyro loop's ampli-
tude ratio (a function of frequency) as it defines the frequency range of the signi-
ficant motions to be followed by the computational process. In Box 8, the distortion
of the angular motion caused by a finite coordinate transformation frequency in
resolving the accelerometer outputs into the inertial frame is functionally represented,
This error is associated with the uncertainty in knowledge of the orientation of the
accelerometer input axes between attitude computational interval and occurs because

i = g

is used to approximate

IR o=

in the navigation process. The size effect error described in Section IV is
typical of this class of error.

VI-4




The effect of each of these classes of errors can be appropriately modeled
in terms of an error rate (Aw) or error acceleration (Ax) in the sensor or vehicle
frame. The computational error models have been previously presented in this
report; Reference 12 summarizes the sensor, coupled sensor and coupled computer-
sensor errors. To evaluate the effect of these errors on system performance
(attitude, velocity and position) a linearized set of navigation or propagation equa-
tions can be employed; the enclosed box of Figure VI-1 represents one type of
linearized propagation equations.

With a system performance model formulated as above, the design of the
system for a particular mission or missions can be accomplished in performing
such an analysis, The following areas may warrant tradeoff studies: 1) attach-
ment structure resonance frequency, sensor loop bandwidth and computational
frequency; 2) dynamic and quasi-steady error allocations, and 3) allocation of
errors between the various dynamic errors and between the various quasi-
steady errors,

B. Flight Environments

The flight environments employed in the computational requirements study.
are presented in this section. The mission selected for analysis was that of a boost
and injection in a circular (108) n mi) parking orbit, a coast phase of one period and
then an injection onto a translunar trajectory. The flight environment employed
was that of an Atlas-Centaur which is also typical of an Atlas-Agena and a Thor-Delta
environment.

Figure VI-2 presents the atmospheric angular induced motion for the first
three vehicle bending modes lasting for the first 140 seconds of flight. The dashed
lines are the approximations employed in the analysis in order to reduce the amount
of data into the digital evaluation program.

In addition to these atmospheric induced motions, a control system limit
cycle of 2 deg/sec at 2 cps about each of the vehicle axes was assumed during all
phases of power flight. During the free flight portion of the mission, a control
limit cycle of 1 degree amplitude with a period of 200 seconds is assumed.

Figure VI-3 presents the linear vibratory input envelope at the Centaur
mounting shelf measured during the flight of AC-2. The solid line represents the
estimated amplification of the environment by a sensor package attachment
structure characterized by a structural resonance at 200 cps with an amplification
factor of 3. Associated with this linear environment is the estimated induced angular
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environment presented in Figure VI-4 for a non-cg mounted sensor package of the size
and shape of the LEM Abort Sensor Assembly. This estimated linear induced angular
environment represents the path in Figure VI-1 from block 1 associated with the linear
environment to the environment summer in the angular environment line. These
estimates of induced angular motion were based upon planar or two-dimensional
models; a three dimensional model to evaluate the possibility of introducing coning
motion is not available.

These environments form the basis for evaluating the effect of different strap-
down computational processes upon navigational accuracy presented in the following
section. It was assumed that the band width of the gyros were significantly wide to
pass all of the vibrating motion shown in Figure VI-4 onto the computer.

C. Analysis Results

Using the program described in Volume II, four computational and computer
configurations were analyzed; the attitude errors and their effect upon navigational
accuracy were established. These studies were performed for the trajectory and
flight environment described in Appendix E of Volume II. The computer and compu-
tational configurations investigated are shown in Table VI-I.

TABLE VI-I
SUMMARY OF COMPUTATIONAL CHARACTERISTICS FOR SIMULATION RUNS

Coordinate Coordinate
Attitude Integration Attitude Conversion Conversion
Configuration Word Length Scheme Frequency Scheme Frequency
Number (bits) {order) (cps) (order) (cps)
1 35 1st 200 2nd 200
2 27 1st 100 4th 50
3 30 2nd 100 2nd 100
4 27 2nd 50 4th 25

Because the computational errors are independent, the various processes
analyzed and their associated errors can be permuted into many different combina-
tions. Inthis section the various errors will be discussed in three groups:

1) Roundoff associated with computer word length used in the attitude process;

2) Truncation associated with the integration scheme and frequency used in
the attitude process; and
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3) Coordinate conversion associated with the scheme and frequency used to
resolve the accelerometer data into the inertial computational frame.

The truncation errors are associated with the attitude computational process
following the motions described by the constant pitch rate of the vehicle and the
sinusoidal and vibratory motions described in the previous figures. Table VI-II
presents the legend employed in Table VI-II through VI-VI wherein the navigational
errors due to initial conditions and the computational errors are presented for the
four configurations analyzed. Initial condition errors of 20, 20 and 10 meters for
downrange, crossrange and altitude and 20, 10 and 10 arcseconds for azimuth, in-
plane and out of plane vertical alignment were assumed. The errors were evaluated
at five points within the trajectory; segment (1) at 80 seconds at which the atmospheric
induced motions were changed; segment (2) at 140 seconds corresponding to the termi-
nation of the first stage; segment (3) at 560 seconds corresponding to the termination
of the second stage and injection into a 108 n mi circular orbit; segment (4) at 5900
seconds with the completion of one orbit; and segment (5) at 6065 seconds after
a AV of 10, 000 ft/second was applied tangential to the orbit. In these tables the
attitude error (DELRA), the downrange error (DELDR), the crossrange error
(DELCR), the velocity magnitude error (DELVEL) and the in-plane (DELGAM) and
out-of-plane (DELPSI)‘ velocity errors are shown.

In order to graphically examine the variations in performance with different

computational characterisitcs, the total position and velocity errors at 560 seconds
are presented in Figure VI-5 through 7 for truncation, roundoff and coordinate con~
version, respectively, In these figures, the actual data points obtained from the
simulation are circled; the dash lines connecting these points and extrapolating
beyond are based upon the analytical models presented in Section IV,

In Figure VI-5, the truncation error for the first order integration process is
presented as a function of computational frequency. The curve presented represents
the root sum square of the errors due to the constant rate, the sinusoidal and random
environments. For the angular environments considered, the truncation error for
the second order process is negligible as indicated in Tables VI-5 and 6. (Similarly
the errors for any higher order integration scheme would also be negligilbe.) In
the first order data presented, the truncation error decreases then increases as
the computational frequency is increased. This behabior is the result of the inter-
action of the sinusoidal and random environments. For the sinusoidal motion, the
computational error decreases as computational frequency is increased. For the
vibratory input, the analytic model developed provides an optimistic estimate of the
error; infact, the model's characteristics are such that the vibratory motion at
frequencies beyond the computational frequency yield no error at all. For this
reason, the computational error using this model is a function of only the environ-
ment at frequencies below that of the computer. Therefore, with reference to
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10
11
12
13
l4
15
16
17
18
19
20
21
22
23
24
25
26

27

TABLE VI-IiI

DEFINITION OF ERROR SOURCES -

ERRGR DEFINITION

INITIAL RADIAL POSITION

INITIAL DOWNRANGE PCSITICN

INITIAL CROSSRANGE POSITION

INITIAL RADIAL VELCCITY

INITIAL DOWNRANGE VELOCITY

INITIAL CROSSRANGE VELOCITY

AZIMUTH ALIGNMENT

INPLANE VERTICAL MISALIGNMENT ANGLE

CUT OF PLANE VERTICAL MISALIGNMENT ANGLE
CONSTANT RATE TRUNCATION

SINUSOIDAL RATE TRUNCATICN (X 80DY AXIS)
SINUSOIDAL RATE TRUNCATIGCN (Y BCDY AXIS)
SINUSCIDAL RATE TRUNCATICN (Z B80ODY AXIS)
ROUNDGFF (X 80DY AXIS)

ROUNDOFF (Y 80DY AXIS)

ROUNDOFF (Z BOOY AXIS)

CONING TRUNCATION (x BODY AXIS)

CONING TRUNCATIGN (Y BODY AXIS)

CONING TRUNCATIDN (2 80DY AXIS)
VIBRATORY TRUNCATION (X BCDY AXIS)
VIBRATORY TRUNCATION (Y BCOY AXIS)
VIBRATORY TRUNCATICN (Z BODY AXIS)

GYRO QUANTIZATION (x 80DY AXIS)

GYRO QUANTIZATION (Y BODY AXIS)

GYRO QUANTIZATION (Z BODY AXIS)

SIZE EFFECT
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Figure VI-4, the computational error for the first order scheme with this model
increases as the éomputatibnal frequency is increased. This model, although
inappropriate for the assumed environment below frequencies of 400 to 500 cps,
does however set an upper bound on accuracy (a lower bound on error) as it is as
shown in Section IV to be an optimistic estimate of the error. ’

In this evaluation of the attitude process truncation error, no coning motion
was assumed. Coning motion was not assumed because if it occurs, it most probably
occurs at the resonance of the sensor package mounting structure or shelf. To
determine whether the motion at resonance is correlated to produce coning requires
actual testing of the structure loaded and stressed as it would be in flight. Complex
three dimensional analyses may indicate the potential existance of coning motion,
but testing is required for complete verification. To demonstrate the effect that
coning motion could have upon the computational process requirements, it was
assumed that coning was associated with the vibratory environment in this region
of 100 to 200 cps, the resonance frequency range of the assumed mounting shelf and
attachment structure. The resulting error as a function of computational frequency
and integration scheme is shown in Figure VI-8. For computational frequencies
below 100 cps, the shown drift rate would cause navigational errors of 7 kilometers
and 39 meters per second. It is seen in this figure that if this coning motion did
exist, computational frequencies of 400 cps using a fourth order integration would
be required to achieve acceptable accuracy; integration frequencies appreciably
higher would be required for lower order integration schemes.

In Figure VI-6, the roundoff error associated with the word length used in
the attitude process is presented. The navigation error shown behaves as predicted;
it is proportional to computer frequency and is inversely proportional to word
length. The word length required depends entirely upon the frequency of the inte-
gration process necessary to maintain the round off error at an acceptable level.

In Figure IV-7, the size effect error associated with resolving the accelero-
meter data into the inertial frame is presented for both the second and fourth order
processes. The navigational errors are inversely proportional to the fourth and
the second power of the coordinate conversion frequency for the fourth and second
order schemes, respectively.

For the assumed environments, a satisfactory computational process would
consist of a second order attitude integration scheme at a computational frequency
of 50 cps. This would allow a fourth order coordinate conversion process to be
performed at a frequency of 25 cps. To balance the round off error with that of the
data processing scheme error, 32 bits of precision would be required in performing
the attitude computational process. Assuming gyros whose maximum torquing
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angular velocity is 10 degrees per second, a 24 bit (including sign) word length
computer would be required. This computational system would yield navigational
accuracies on the order of 75 meters and 0.2 meters per second. If the character-
istics of the mounting shelf and the sensor package mounting structure are such that
coning will be encountered, the bandwidth of the sensors and the attitude compu-
tational frequency must be sufficient to follow the motion. If the coning frequency
occurs at high frequencies, the computational requirements can be substantially
changed as typified by the example and the errors displayed in Figure VI-8,
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SECTION VII
LIST OF SYMBOLS

b . . . .
[ Ta] 3 x 3 direction cosine transformation matrix from coordinate system (a) to
coordinate system (b)

t time

w angular rate

[ Q] the skew symmetric angular rate matrix

F specific force

\' velocity

R position

g gravitation induced acceleration

At integration time interval

aij direction cosine element of the ith row and jth column
Aaij the error in the aij element

C rate of change of the norm of the attitude error matrix

f frequency in cycles per second

Q quantization level

¢ power spectra density of angular or linear environments
B maximum angular amplitude of sinusoidal oscillations

fc computational frequency in computational cycles per second
G transfer function

VII-1



10,

11.

12,

VIII. REFERENCES

"Inertial Guidance, Navigation and Control Systems'; Duncan, R.C. and
Gunnerson, A.S., Jr.; NASA Manned Spacraft Center, Houston Texas;
Journal of Spacecraft and Rockets; November-December 1964,

"Preliminary Analysis and Evaluation of Analytic Platform Systems-FY63",
Alongi, R.E.; Systems Analysis Branch Army Inertial Guidance and Control
Laboratory, Redstone Arsenal, Alabama; Rpt. No. RG-TR-63-23; August 21,
1963.

A Body Bound Inertial Navigation System Using Electrostatically Supported
Pendulous Gyro Accelerometers'; Gentry, C.D., Navigation and Guidance
Division, Avionics Laboratory, WPAFB, and Johnson, F.V., General
Electric Co.; Transaction of the Eighth Symposium on Ballistic Missile and
Space Technology; October 16-18, 1963, Secret.

"The Present and Future Roles of Strapped-Down Inertial Systems'; Powell,
J. C.1 Honeywell Inc,; Transactions of the Eighth Symposium on Ballistic
Missile and Space Technology; October 16-18, 1963,

"Strapped-Down Inertial Guidance"; Quasies, G. R; Honeywell Inc, ; Space/
Aeronautics; August 1963,

"Navigation and Guidance Systems Employing Gimballess IMU'"; Bumstead,
R. W, and Vander Velde, W. E.; MIT; AIPA Guidance and Control Conference;
August 12-14, 1963,

"Theoretical Analysis of Gimballess Inertial Reference Equipment'; Weener,
T. F.; Doctoral Thesis; MIT; March 1962,

"Strapped-Down Navigation'; Bessen, A.S. and Levine, J.; Sperry Rand Ford
Instrument Co.; Data Systems Engineering; April 1964.

"A Solution for the Problems of the No-Gimbal Inertial Navigator Concept';
Turley, A.R.; Avionics Laboratory, WPAFB; AFAL-TR-64-307; January 1965,

"Vehicle-Fixed Component Inertial Guidance System Study'’; Broxmeyer, C,
and Wishner, H; Raytheon Company; NAVWEPS Report 8668, NOTSTP 3715;
December 1964,

Haystings, Cecil, Approximations for Digital Computing, Princeton University,
Press, 1955,

"Test Equipment Definition Study for NASA/ERC"; United Aircraft Corporate
Systems Center; Report SCR 325; January 1967,

VITITI-1



APPENDIX A

STRAPDOWN INERTIAL SENSORS AND SENSOR LOOPS

A, Introduction

The primary purpose of an inertial navigation system is to compute with respect
to inertial space the velocity, position and orientation of the carrier vehicle. The
information necessary to perform these functions for a strapdown navigator is obtained
from measurements of the linear and angular motions of the vehicle by inertial sensors
rigidly attached to the vehicle. The strapdown computational process is a function of
the type and format of this sensor information. Therefore, a certain degree of under-
standing of the sensors as mechanized in strapdown inertial navigators is a prerequi-
site to the development of the computational requirements.

B. Inertial Sensors

For the purpose of developing the requirements for and analyzing the computa-
tional process, strapdown mechanizations may be classified by the type of information
appearing at the sensor-computer interface. Such a classification results in two distinct
classes of strapdown systems based entirely upon the data obtained from the sensors.

The first system employs sensors whose sensitive or input axes are maintained
fixed relative to the vehicle; these sensors are called restrained sensors. The outputs
for restrained gyros are the components of the angular rate of the vehicle or its integral
relative to inertial space along the gyro input axes. The outputs for restrained accel-~
erometers are the integral of specific force along their input axes. Since the attitude
information to be derived from the gyros is vehicle angular orientation with respect to
inertial space, this class of mechanization requires that the gyro data beused in the
numerical integration of the equations expressing the angular rates of change of the
desired attitude parameters. Specific gyro mechanizations that have received attention
and fall into this category are rate, rate integrating, single axis platforms, paired
pendulous integrating gyro accelerometers and, because of the similarity of output,
displaced, paired accelerometers. Restrained accelerometers that have been considered
are: force or torque rebalanced pendulous accelerometers, restrained pendulous
integrating gyro accelerometers and a concept under development wherein the force
required to center the sphere of a free gyro is used as a measurement of acceleration.

The second class of systems employs sensors whose sensitive axes are free of the
vehicle's orientation; these sensors are called free sensors. The output of free gyros
are trigonometric functions of the angular orientation of the vehicle relative to the gyro
rotor (the model of inertial space). This class of gyro provides the required vehicle



attitude through the solution of a set of transcendental and matrix equations without
integration of the angular rate equations. To date, only one type of gyro mechanization
falls into this category, namely, the free gyro with different types of suspension:
cryogenic, magnetic, or electrostatic. The free pendulous gyro accelerometer sensor,
because of its pendulousity along the spin axis of the rotor, provides specific force
information through a measurement of its precession rate relative to inertial space.

C. Sensor Loop Mechanizations and Characteristics

Each of the sensor loop configurations listed in the previous section have certain
key requirements that must be satisfied in order to obtain a precise strapdown inertial
navigator. These requirements are summarized in Table A-I. Figures A-1 through
A-5 present the functional block diagrams of each of these sensor configurations as
they would be employed in a strapdown navigation system.

TABLE A-I

KEY REQUIREMENTS FOR DIFFERENT STRAPDOWN
SENSOR CONFIGURATIONS

Sensor Configurations Key Requirements*

Pulse Torqued Gyros (Figure A-1) Wide dynamic range and a high degree
of linearity

Single Axis Platform (Figure A-2) Accurate angular encoder under extreme
dynamic conditions

Paired PIGA's (Figure A-3) Accurate angular encoder under extreme
dynamic conditions

Paired Rebalanced Structural stability between accelerom-

Accelerometers (Figure A-4) eters mounted many feet apart

Free Gyro (Figure A-5) Critical sphere pattern and accurate
optical pickoff under extreme dynamic
conditions

* - all require high data resolution (low quanitzation)

- all but free gyro require sufficient bandwidth in the sensor loop to follow
significant vehicle motion

- all require accurate alignment or knowledge of the orientation of the
sensitive (input) sensor axis
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Figure A-1 Functional Operation of Pulse-Torque-Rebalance Strapdown IMS
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Figure A-5 Functional Operation of Free Gyro Strapdown IMS

1. Angular Rate Measuring Sensor Loop Configurations

The two primary requirements for a strapdown rate sensing device are: (1) a high
degree of linearity over the dynamic range between the random drift rate of the sensor
up to the maximum angular rate of the vehicle (a dynamic range of six to eight
decades) and (2) a high information resolution or a low quantization level. In addition,
the sensor loop must have a bandwidth sufficient to follow all significant vehicle motions.

The first four sensor configurations presented in Table A-I are basically rate
measurers that attempt to satisfy the primary requirements by different approaches.

In the rate integrating gyro mechanization (Figure A-1) the pick-off on the gyro
output axis is proportional to the applied rate. This rate signal is used by the torque
rebalancing electronics to generate a current proportional to the sensed input that
retorques the float, thus nulling the sensed input and holding the input axis of the sensor
tightly fixed with respect to the vehicle. Rate integrating gyros mechanized as described
above are used in place of rate gyros simply because the latter have not demonstrated
the required accuracy. To make a precise measurement of the input signal in the rate
integrating gyro servo loop and to convert an analog signal to digital information (for
computational purposes), the retorquing signal is broken into a series of pulses.
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In such a pulse-rebalancing scheme, each pulse represents the integral of rate (the
magnitude of the current times the time duration of the applied pulse) and is termed
the sensor's resolution or quantization level. Either current magnitude or its applied
time duration can be controlled as a function of the magnitude of the input rate.
Usually current is held constant because it is easier and more accurate to control
and measure time.,

Several methods of pulse rebalancing have been conceived; they are termed
binary, ternary and pulse-width-modulated pulse torquing. Binary torquing is a scheme
in which alternate positive and negative pulses of equivalent weight represent a zero
input. For any other input there is a net difference between the sum of positive and the
sum of negative pulses over a finite time period. The net difference represents the
angular rotation that has occurred during that time period. Ternary torquing (a pulse-
on-demand scheme) consists of applying constant weight pulses (either positive or
negative) only as required. In the binary and ternary schemes, the current switching
points are fixed such that the quantization level (the value of each pulse) is a function
of the switching frequency whose upper limit is presently limited by the impedance of
the gyro torquer. A third scheme is one in which pulsing is continuous (similar to
binary), but the width or time duration of the positive and negative pulses is controlled
as a function of the sensed input. This scheme has the advantage of the binary torquing
scheme (constant power input to the gyro), but also permits much smaller quantization
levels (a fraction of an arc-second) for the same retorquing current switching frequency
as binary or ternary because of the allowed variability in the pulse width thus making
the quantization level independent of the switching frequency.

In order to avoid the problem of nonlinearity in torquing a gyro over a wide
dynamic range (about seven decades), the gyro can be mounted on a single-axis platform
such that its sensitive axis is isolated from the high vehicle angular rates. This
mechanization is schematically represented in Figure A-2. Any sensed input by the
gyro is used to rotate the platform about its gimbal axis which is parallel to the input
axis of the gyro. Angular information (the integral of rate) is derived from a pick-off
mounted on the gimbal axis. Either an incremental encoder with a "counter' or a total
angle encoder with a subtraction of sequential readings can be used to generate incre-
mental angular changes. The quantization error is now associated with the encoder
rather than with a gyro retorquing servo loop. Both optical and electrical encoders
have been applied fo this application.

The gyro sensors used in these two schemes rely upon the angular momentum
vector of a spinning body as the physical inertial reference, Three other sensor
mechanizations can also be used to measure angular rate: vibrating momentum (tuning-
fork), nuclear, and laser gyros. The vibrating momentum gyro's major problem is
achieving a good null stability; the laser gyro requires much additional research work
to increase its ability to detect differences in frequency using small optical path lengths;
while nuclear gyros require improvements in many areas, readouts being one.

A-6




In a mechanization using six pendulous integrating gyro accelerometers (PIGA),
each system measurement axis consists of two PIGA's whose input axes are anti-
parallel. The PIGA's are packaged as close together as possible so the two sensors are
essentially making measurements at the same point. Linear velocity and angular dis-
placement data as shown in Figure A-3 are derived by adding and subtracting the outputs
of the angular encoders of the two paired sensors. Any angular rotation of the float
about the gyro output axis due to either sensed linear acceleration or angular rate is
again used to control rotations about a gimbal axis so as to null out the output axis
error. Again the quantization error is associated with the angular pickoff.

Another mechanization that also uses paired accelerometers employs force or
torque restrained devices whose input axes are parallel but separated by a large and
precisely known distance. The sums and differences of the output of each pair as
shown in Figure A-4 provide a measure of the incremental angular change about an
axis perpendicular to the plane of paired input axes and a measure of the linear
velocity change in the plane of the paired input axes. The quantization error is
associated with the sensors' retorquing or forcing loops which are similar to those
previously described in the rate gyro scheme. This scheme requires that the sensors
be linearly but rigidly displaced by a large amount. For many applications, the
accelerometer bias and the stability of the displacement are so poor that the required
displacement must be greater than the diameter of the vehicle to determine angular
rates to the level of accuracy required.

2. Free Gyros

A free gyro maintains an inertial physical reference stabilized with respect to
inertial space; direct observation of this reference yields the vehicle attitude. The
inertial reference is usually the angular momentum vector of a rotating sphere sus-
pended in an evacuated spherical container. After a spin-up, torquing is terminated
and the sphere is allowed to coast. The suspension scheme for the rotating sphere
(cryogenic, magnetic, or electrostatic) is not critical to the concept of the sensor
configuration; it is only important with respect to performance. Attitude of the vehicle
relative to the angular momentum vector can be computed by inscribing a pattern on the
rotor such that the timing of series of lines crossing under an optical pick-off is a
function of the angle between the pick-off and the spin vector of the rotor; from this the
"direction cosine' or attitude of the spin axis relative to the pick-off can be computed
(Figure A-5). A minimum of two pick-offs are required to define the orientation of the
spin vector to the vehicle. Two free gyros whose spin axes are nominally perpendicular
are sufficient to define an inertial reference from which vehicle attitude can be computed.
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3. Accelerometers

The accelerometers usually considered for use with either a free gyro configura-
tion or the restrained rate measuring gyros are the forced or torque-rebalanced
class. Their rebalancing process and electronics are identical to those employed with
torque-rebalanced gyros. Some consideration has been given to the use of a free gyro
as an accelerometer by (1) measuring the force necessary to center the spinning sphere
(force-rebalancing) or (2) unbalancing the accelerometer along the spin axis and meas-
uring its precession rate relative to other balanced free gyros.
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APPENDIX B

KINEMATIC EQUATIONS AND ALGORITHMS

A, Introduction

The function of an inertial navigator is to indicate attitude, velociy and position
of a vehicle with respect to a selected reference frame using information obtained from
onboard instruments. To perform this function, a solution of a set of three first order
nonlinear differential equations must be mechanized in a digital computer to obtain
position. A restrained gyro mechanization requires an additional set of differential
equations to compute attitude. These equations can be solved by many different numer-
ical integration algorithms of varying degrees of complexity and accuracy. The schemes
evaluated in this study are presented in this appendix.

The measurements of linear and angular motions of the vehicle relative to
inertial space are obtained in vehicle coordinates for a strapdown navigator because
the inertial sensor's readouts are rigidly attached to the vehicle. This necessitates
that (1) the gyro outputs be used to compute the attitude of the vehicle relative to the
computational frame, and (2) the computed attitude be used to resolve the accelerom-
eter outputs into the computational frame where they are doubly integrated along with
a gravitational model to yield vehicle position. The kinematic equations, expressed in
vector-matrix notation, that must be solved are:

YV [Trw] - [T 0] [20] B-1)

Fo-=[tlo] T o (B-2)

=1 — I t I

Vo 7'+ f {Fo-7®} a (B-3)
o]

I I t o

R'@) = R, + [ Ve (B—4)
o

For simplicity, these equations have been expressed in an inertial computation frame;
a 3 x 3 matrix, [Ty (t) ] is used to define the orientation of the vehicle or sensor

readout frame relative to the computational frame, The elements of the skew matrix,
Q, are the components of the angular rate of vehicle sensor readout frame relative to
the inertial frame. The functional mechanization for the solution of these equations is
shown in Figure B-1. In this figure, the gyro data processing function for restrained
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Figure B-1 Functional Mechanization for the Solution to the Navigation Equations

gyros would consist of extracting angular rates (as required by equation B-1) from the
integral of rate (available from the gyros). In a free gyro mechanization it would be
a synchronization of the outputs from the multiple pickoffs of these gyros. The
accelerometer data processing would consist of extracting specific force from its
integral for both restrained and free accelerometers. For all sensors, compensation
for deterministic errors would be applied.

Although these navigation equations have been expressed in an inertial frame,
considerations of computational simplicity with respect to a specific mission may
suggest a different computational frame. Satellite navigation for instance may well be
best accomplished in a rotating frame. However, such considerations do not affect the
computational requirements because such a frame differs from the inertial frame by
at most a transformation matrix whose time dependency is computable.

The following section describes the integration schemes, sensor data processing
schemes and attitude parameters that have been investigated in this study. In the
presentation of the various integration schemes, the required inertial measurements
of angular rate and specific force will be assumed to be available; the following section
describing sensor data processing schemes will describe the techniques for obtaining
rate and specific force from their respective integrals that is in actuality the output of
the inertial sensors.




. B. Integration Algorithms

The solution of equations B-1 through B4 requires the numerical integration of a
set of first order, nonlinear differential equations because no general closed form
solution to these equations is available. Many numerical difference schemes can be
used; rectangular, second order Runge-Kutta and fourth order Runge-Kutta algorithms
were considered in this study.

The difference equations for each of these schemes for computing attitude in a
restrained gyro system by solving equation B-1 can be expressed for one integration
step as:

[To ] pq = [Tp 1y 3[1] + [G]% ' (B~5)

where [G] is a weighted average of the angular rate components at various points within
the integration step coupled with higher order corrections for the Runge-Kutta procedures;
[Tg] denotes the direction cosine matrix defining the orientation of the vehicle body
relative to the inertial computational frame.

With time as the independent integration parameter, At is defined to be integration
step size. 21, 99, and Qg denote in the following equations, the angular rate matrices
at the beginning, at the midpoint and at the end of the integration interval., When
mechanized within the computer using a matrix multiply subroutine, equation (B-5)
takes on the following forms for each of the three integration schemes considered:

(1) Rectangular (Euler)

[Tel ,q=[Tel, 3[1]+ [2,] At§ (B-6)
| (2) Second Order Runge-Kutta
| (181, = 15, 21+ [, -
 where

[x,1 =[Ty], [o] ¢

(%, = {lT 1, + [Kl]i - [o,] &
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(3) Fourth Order Runge-Kutta
(o] ., = [TS] + 1/6 {[Ml] toM] + 2]+ [M] ) @9
where
C
[Tp] - [2,] At

{Ire] + L1} [o,) &
1
2

—
=
oy
e
1

—
=
Do
]
1"

b’ ' n

(M,] ={lTpl + 20,0} [o,] a

(] = {lTyl, + (M) }- o] &

These equations state the numerical procedure used for each integration step.
The inputs to each step are the last calculated orientation, available either as an initial
condition or from the previous computation, and the angular matrices at the specified
times, [ 4 ], that must be available or derived from the output of the triad of gyros.

The six differential equations defining the position and velocity of the vehicle with
respect to the computational coordinate frame are presented as equations B-3 and B4.

Beginning with the integral of specific force in the computational frame (AV®) and
using fourth order Runge-Kutta as the integration algorithm, the numerical procedure

for solving these equations for one integration step, At, is:

=C =C =C =C
- + + -
b1 =V, AVn+ét2_ AV A (B-9)
1 I = I — I - -1 =
-7 A + + +
s Atle ®)+ 2 C)+ 2 C)+ g (Gl
=1 =1 =1 1 =1 =1
- R +— +
ntl = n * Vn At 6 at [SAVn-l-é-t- AVn+At

At {EI C)+E @)+ T (63)}]

I

n+ At
second half = of the integration step, respectively; C
vector defined by

where A\—fi1 LAt and AV are the integral of specific force over the first half and

i is an intermediate position
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— =I 1 .. =L

= R + =
C1 n 2 AtVn
- =1 1 =I =1 1 I =
C, = R +5At[V + Avn+%§-_2-Atg €)1
— —I =1 =I 1 =1 =

= + + - =
C, =R + &t [vn AV . %t 5 Atg (cz)]

The general form for the potential used in computing gravitational forces, gc,
within the Earth's sphere of influence is

0 R n Y n
U = ‘VR 1 - Z 3 (—Re—) Pn(°) (sin 0) + Z Z (B-10)
n=2 m=1

n=-2

Jn(m) (sin 9) cos [m (A - )\n(m) )]

where
U is the potential function,
U is the product of Earth mass and the universal gravitational constant,
Re is the Earth's equatorial radius,
R is the geocentric radius,
A is east longitude with respect to Greenwich,
] is geocentric latitude,
Pn(m) are Legendre Polynomials,
n(m) are zonal (latitude dependent) harmonic constants,
Jn are tesseral (longitude and latitude dependent) harmonic constants,
An(m) are longitude constants of the Jn(m).

This expression is normally differentiated with respect to the directions of the
chosen coordinate system to yield the gravitational force per unit mass on a vehicle at
the location ¢, A, R. Recent fits to ground observational data of orbiting satellites
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have refined the knowledge of the constants up to the fourth order. The second
oblateness harmonic, J2, is necessary in all but the crudest navigation systems,
since it can cause perturbations from the spherical case of several miles over a frac-
tion of an orbit. The higher order terms are necessary for more accurate systems.
Reference B-1 shows short term perturbations of over a mile within one orbit due to
the 35(®) and 33B) tesseral terms.

Consideration has been given to multi-step integration schemes of the predictor
type, such as the Adams-Bashforth and Milne schemes, or corrector types, such as
Adams-Moulton, Milne-Simpson, and Milne-Hamming. However, these multiple step
schemes have some characteristics that must be carefully evaluated in trade-off
studies from the system standpoint before applying them in space navigation systems.
The corrector forms are most accurate, but must be used in conjunction with a predictor
method, Care must be taken in selecting a method, since some of them, though accu-
rate in minimizing local truncation error, are somewhat unstable to the propagation
of computational errors (Reference B-2), Single step methods, on the other hand are
stable; the Runge~Kutta algorithm ''displays a most interesting ability to follow a
solution without increasing its error" (Reference B-3). The one-step methods are
considerably less complex and require less computer storage. They are self-starting
and adaptable to changing integration step sizes, whereas the multiple step methods
require a starting procedure (usually with a one-step method) for initiation.

For some applications it may be desirable to use an incremental Digital Differential
Analyzer (DDA) rather than a whole number, general purpose digital data processor
(DDP). In utilizing a DDA, angle(or velocity in the case of accelerometers) is logically
used as the independent integration parameter rather than time. Each sensor pulse, or
a fixed number of pulses, is allowed to accumulate until a specified level is reached, at
which time an integration step is performed. Because the multiplications in the angular
motion difference equations are between direction cosines and the incremental angular
change, only additions or subtractions are needed because the angular change is always
constant. DDA's readily lend themselves to rectangular integration processes although
second order schemes such as modified Euler integration (second order Runge-Kutta)
can be implemented without undue computer complexity.

C. Sensor Data Processing Techniques

1. Restrained Gyros

The integration of the angular equations of motion requires rate information
while the gyro pulse data represents the integral of angular velocity. The output of the
gyros must, in effect, be differentiated with respect to time to establish compatibility
between the gyro outputs and the integration process. If the gyro output data are
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treated as incremental angular rotations and this angular change is assigned vector
properties, the accuracy of the rate extraction process (@ = Ko/ At) and hence that of
the solution of equation (B-1) is limited to second order, independent of the use of
higher order integration schemes. This has been sometimes construed to be a funda-
mental accuracy limitation of strapdown systems associated with the commutative
error of assigning vector properties to incremental rotations.

The incremental outputs of the gyro, however, are not angular rotations in the
true sense, but more correctly the integral of the angular rate components as a
function of time and these integrated quantities are correct at the data sampling in-
stants to within the accuracy of the integrating sensor. Thus, an inverse estimation
process that derives the angular rate components (whose integrals best fit the data)
can be used to provide rate data of higher order accuracy at specified points in time for
use in higher order numerical integration algorithms.

a. Development of Angular Rate Extraction Process

The output of an integrating rate gyro, if assigned vector properties gives rise
to a set of computed direction cosines which, by the mean value theory, lead the true
set of direction cosines by some phase angle often termed the third order commutivity
error. A more accurate processing scheme consists of (1) fitting an nth order
polynomial to the gyro outputs over an interval of time using multiple samples of the
gyro output during that interval and then (2) extracting the rate information from the
polynomial which can be differentiated analytically. The following analysis demon-~
strates that errors arising from the use of a second order polynomial when imple-
mented with fourth order Runge-Kutta are of fifth order, consistent with the accuracy
of the fourth order Runge-Kutta integration scheme. The same procedure may be
extended to any order integration algorithm.

The fourth order Runge-Kutta integration of the angular rate equations (equation
B-8) may be rewritten for each integration interval as

7]y =[], 021, flegl + 0 fog] + [0y 8 @

+ ([e,] - [e,] + [2,] - [2,] + [2,] * [9 ) At

1
s gleg] c [,] ¢ [9,) % [9] - [9,] - [agh)af

+2([a] - [2,] + [9,] * [og] >At"‘}

The above equation requires values of the angular rate matrix at the beginning, midpoint,
and end of each integration interval, [2 1] . [0 2] , and [ 3] , respectively.



The required rate estimates are obtained from the following gyro data processing
scheme which assumes that (1) the frequency of angular motion to be followed by the
integration scheme is lower than that of the attitude computational frequency and
(2) that the integral of angular rate component along each body axis over any integration
interval can be represented as a polynomial expanded in powers of time about the
beginning of the integration interval (t,) (for convenience, ty = 0):

t
0= [ wdt=at+ ptz (B-12)
[0}

During each integration interval, the value of © is obtained twice from the sensor,
first at the midpoint (At/2), again at the end of the interval (At)

At/2
6 = [ wdt
2 (o]
At
9 =
3 f wdt
0

such that the coefficients of the polynomial in Equation (B-12) may be evaluated in
terms of 0, and 63:

1 1
—_—_— _9 —_— ——
@ =g (402 ) = 5(20,-46,) (B-13)

3 (@at)

Estimates of components of angular rate denoted by «w' (where wdenotes the true rates
components) at any time within the interval can then be obtained by substituting these
coefficients into the derivative of the 6 polynomial (equation B-12):

(.O’ = = —1— - -+ —4t— . —_
(t) a+ 2pt At (462 63) 5 (63 262) (B-14)
At
For convenience define
AGZ = 02 and A63 = 93 - Aez (B-15)
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Substituting these values into Equation (B-14) and evaluating that equation at times 0,
At/2, and At as required by the fourth order Runge-Kutta integration scheme {equation
B-11) yields the estimated rates at these times along the body axes:

1
t — o 1 = — - _
w! ((=0) = . i (BA0, - 40, (B-16)

At 1
1 iy = \ = A
wp (550) = w9y T ap B0y 48

1
1 _ - T = e -
o] (=AY = o) T (8A6, - Ad,)

i = x,y, or z body axis

b. Evaluation of the Gyro Data Processing Error

The accuracy of the gyro data processing scheme (Equation B-16) may be
determined by expressing the angular rate component along a body axis as a polynomial
expansion in time to any desired degree of accuracy:

4

2 3
= + <+ + + . . . . _
) a 0 alt azt + a3t a 41: (B-17)

This expression may then be integrated to obtain Aez and A93 thus simulating the
outputs of a perfect gyro loop:

tir1 a 9 (B-18)
= = - d — - e e e . -
AD. { odt =a, (b, ~t) * 5 €, - t)
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and the results substituted into Equation B-16 to obtain the estimates of angular rate,
w' that the computational scheme would compute:

1 2 1 2 3 1 2 3 3
= + + - A - - -
col ao a11:1 az(t 6 t) + a3 (1:1 9 tl At 16 At ) (B-19)
4 2 2 3 3 7 4
+ - = - e oo .
a.4(t1 tl At m 1:1 At 20 At)
' At 2 1.2 3 3,2
= + F —) + + At + —AL + + —
w, a, al (1:1 > ) a, (t1 t1 t 3 ) ag (’c1 ) t1 At

2,1.,3 4 3 2 ,,2 3,1, .4
+ At +—At) + + At + AtT + At +— + .
t1 t n t) a, (1:1 2t1 t 2t1 t t1 t 5 AtY)

1 2 2 5 ..2 3 2
= + + At) + + A —A -+
wg aO a1 (t1 t) a, (’c1 2 1:1 -+ 5 t7) + ag (1:1 3t1 At

5 2 11 ,..3 4 3 2 ,.2 11 3

+ — A + — At + + + A 4+ — A
oty At TEA) a6 F 4t At 5E A 7 b A
23 .4

+ —— At 4 e e .
40 )

The true values of angular rate, wj, wg, and wg, are available from Equation
(B-17) by substituting t =t1, t; + At/2, and t;{ + At, respectively. If the error in
the estimated values of rate (»') is defined to be the estimated value minus the true
value (w' - ), the errors in each of the estimates € = (w' - w), at the beginning,
midpoint, and end of the integration interval are

e, = - At (—é—a2+—%-a3t1+ a4ti+ c ey —At3(% a3+-4§a4t1 (B-20)
+ .. -—At4(4—70'a4+' ce )+ -

2 7 Atz(liz a2+%a3t1+%a4ti+ I At3(%a3+—;'a4t1
by st B ey

€ = —Atz(%a2+—;a3tl+ a4ti+ s ) —At'?'(li6 agq +—45—a4t1+ )
R
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These equations show the error in approximating w about any axis at any of the three
required times in the integration interval is proportional to the second and higher
powers of the integration interval. This is to be expected since only a two-term
polynomial (Equation B-12) is used to extract rate from its integral.

c. Evaluation of the Effect of the Gyro Data Processing Error Upon
the Accuracy of Fourth Order Runge-Kutta Integration

Although the error in the rate estimation presented in the previous section is not
fourth order, the third and fourth order terms cancel when they are substituted into the
fourth order Runge-Kutta integration process, thus preserving the fourth order accuracy
of integration process. This favorable cancellation occurs because the value of the
integral of rate obtained from the gyro is not changed by the errors in the rate
approximations as may be seen by examining the cancellation, term by term, in the
following analysis. For convenience of analysis, Equation (B~11) may be rewritten as

[T] ., = [T]n+-f1;—[T] [A+ B+ C+ D] (B-21)
where

A= (o] +ala]+[o])a

B = ([2,] - [2]+ [e,] - [o,] + [2,] - [o,]) ¢

¢ =3 (lo,] - [o,] - [o] + [o,] - [2,] - [2,])ad

D= (o] - [9,] - [0,] - [25])at*

The error in the A summation of rate matrices times the integration interval of
Equation B-21) is:

E, =at([e ] +4[e,]+ [ey] - [e,] -4[2,] - [25]) (B-22)

—at([e ] + 4[e,] + [e,])
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Since the rate matrices are skew-symmetric, the error in the rate matrices are like-
wise skew-symmetric. The error in the A summation can thus be analyzed one axis
or one element at a time using Equation (B-20).

1l

E

+ + -
Ai Ateli 4AtGZi Ate3i (B-23)

where
i=2X,Y, orZbody axis

Substituting Equation (B-20) into (B-23) and collecting terms demonstrates that the
error in the A summation is proportional to the fifth power of the integration interval

_ 5
E,, = O(@t)

After the matrix multiplication indicated in the B summation is performed, the
diagonal elements of the resulting matrix are composed of the summation of the
products of the rate along the same body axis at different times (the subscripts i and j
denote different body axes; the subscripts 1, 2 and 3 denote different times):

(B-24)

2
= A + +
B t { (wﬂ @0 W.o Wi W,y Wig )

+ (o,

i1 e

+ +
2 ¥ O 9t 9o}

While the off-diagonal elements are the summation of the products of rate about
different body axes at different times:

2
= A + + -
B t { ©i wj2 @ wj2 W0 sz } (B-25)

where

nand m = 1, 2, or 3 and are the usual row and column specification of the
elements of the rate matrix with m=n
and
iandj = x, y, or z with i #7j.

The error in the B matrix is now easily analyzed element by element in terms of
the functional form of each element (of the rate matrix). Since the diagonal elements
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* are composed of two similar groupings of terms, only one need be considered. From
Equation (B-24) the B summation diagonal error (EBD) can be expressed as:

2 1 ! ' !
= A + + -A + +
Esp t 95 {“’11 “i2 °’i3} o, {“’11 “i2 wiS} (B-26)

il

2
+ + + + +
At [wg, {611 €i2 6113} €i2 {‘*’il ®i2 T “i3 }
+ + +
€i2 { 17 iz €13} ]

The error in the last term is immediately seen to be of O(Ate). Substituting Equation
(B-17) for the rate and Equation (B-20) for the errors into the first two terms of the
above equation and collecting terms, the error in these terms is demonstrated also
to be of O(At6),

The error in the off-diagonal elements (Equation B-25) can be also expressed
as:
1 1

2 1 ' '
A + + - + + -
BOD ¢ {(‘*’11 ©ig) Ogp T @y U451 F @) @ty “’33} (B-27)

=
Il

2
A + + + +
¢ {“’jz (gp ™ €ip) + € by + 9p) + €y

+ + + +

W €3 F 5o it o)t Ep €55 }
The error in the last two terms is of O(AtG); when the true rate from Equation (B-17)
and the errors in estimated rate from Equation (B-20) are substituted into this

equation, the error in the first four terms of Equation (B-27) is shown to be of O(Ats).

No further detailed analysis is necessary to establish that the error in the C and
D terms is at most fifth order since the error in approximating each[ Q] is proportional
to the second power of the integration interval, and the C term is multiplied by At3
and the D term by At4. The errors in these terms are at most O(At®) and O(At6),
respectively.

2. Restrained Accelerometers

In a strapdown system, the accelerometers are fixed in the rotating vehicle
frame and must be resolved into the computational frame using the results of the
attitude computations. One method by which this transfer of data can be accomplished is

AVE = [Tg] . AVP (B-28)



This procedure, however, has the disadvantage of introducing a phase angle error
Similar to that for the comparable gyro data processing scheme. A more accurate
procedure, suitable for the use with higher order integration of the position tracking
equations, involves three steps: first, the estimation of specific force (in a manner
similar to the gyro data processing) at the beginning, midpoint and end of an interval
obtained from the integral of specific force; second, the resolution of the specific force
into the computational frame using the computed transformation matrices at each of
these times; third, the integration of specific force in the computational frame over
this interval. The entire data processing scheme can be summarized in the following
equation:

=c _ 1 c 1 [mC . ASh _
AVj =% {(3[Tb]1+ 4[’1‘]0]2 [Tb]3) sz (B-29)

+ (3 [T]f)]3 + 4[Tl°)]2 - [T,:;]l) . A\—/g}

when the subscripts 1, 2, and 3 refer to the beginning, mid-point, and the end,
respectively, of the time interval of interest; AVy and AVg denote the accelerometer
outputs over the first and second half of the time interval respectively.

Using this accelerometer data processing scheme, the rate at which the
accelerometer data can be transferred to the computational frame is one-half the
attitude matrix computation frequency. Employing this scheme with 4th order Runge-
Kutta integration, the position-tracking computations must be carried out at multiples
of four times the attitude computation integration interval; the transfer of data to the
computational coordinates system requires two attitude computation intervals to obtain
one velocity increment and the 4th order Runge-Kutta integration scheme requires two
of these velocity increments (Equation B-9). If it is desired to increase the position-
tracking integration interval beyond that of four intervals, the velocity increments are
resolved into the computational frame every two attifude computation intervals and then
summed for the appropriate length of time in the computational frame.

3. Free Accelerometers

The outputs of free pendulous gyro accelerometers are the unit vectors describing
the orientation of the spin axes of the instruments in the body frame. These veclors
must then be resolved into the inertial frame using the transformation matrix [TIS (t) ]
derived from the gyro data and their derivatives obtained. The components of specific
force are extracted after this transformation and differentiation process. The transfer
of the data to the inertial frame presents no particular problems, simply a matrix
times a vector process. The extraction of specific force however is more complicated
as it requires that the set of linear differential equations (presented in Table B-I) be
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solved. This set of equations, however, is degenerate and their solution requires
either a best fit procedure based on a least squares or similar criteria (Reference B-4)
or logic to choose from among the equations an independent set of three that can be
directly solved at the possible expense of accuracy. After specific force is obtained,
it must be integrated so as to yield the information required by the position tracking
equations.

D. Attitude - Parameters for a Restrained Gyro Attitude Reference System

In a restrained gyro system, the angular relationship of the vehicle to the non-
rotating computational frame must be computed from the gyro outputs. The angular
orientation of the rotating frame with respect to the inertial computational frame can be
expressed by many different classes of parameters. Three classes of predominant
interest are

(1) a three attitude parameter set: three Euler angles representing successive
rotations about three body-fixed axes in a specified sequence,

(2) four attitude parameter sets: quaternions, Cayley-Klein parameters or
four Euler angles, and

(3) a nine parameter set: direction cosines relating each of the vehicle axes to
the three computational axes.

All three of these schemes involve the solution of first order non-linear differential
equations to describe vehicle angular motion.

Euler angles have been used extensively to analyze and describe aircraft angular
motion. A typical set of equations for an x-y-z rotation sequence is shown in Table B-II.
The principal advantage of Euler angles is the ease by which one can relate the mathe-
matics to the actual physical orientation; i.e., pitch, roll, and yaw angles. Although
only three parameters and, thus, three integrations are necessary, the required sine
and cosine functions and the nine conversion equations to obtain [TIS (t)] make the
solution of these equations more difficult and time consuming than the other two methods
for any difference scheme of third order accuracy or better. Also, there is a singular
point analogous to the gimbal "lock' problem on an electro-mechanical three-gimbal
platform; when the second of the three sequential angles approaches ninety degrees, the
other two axes of rotation become near collinear and the rate of change of these two
Euler angles becomes indeterminate. Logic is necessary to prevent this singularity by
either changing to a different angle sequence or adding a fourth angle to the sequence
(analogous to a four-gimbal platform) along with logic to account for redundancy of
information. This leads to the more general class of four-parameter or quaternion
description of orientation, described below.
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TABLE B-I

ANGULAR EQUATIONS OF MOTION FOR THREE CLASSES OF PARAMETERS

1. Euler Angle Method; integrate the following three differential equations:

¢

sec 0 (w cos P - w sin YP)
X y

é i + w cos
wX sin ¥ v Y

Zb=wz+tan9(wysinzp-wxcoszp)

Where ¢, 6, i are Euler angles about the body x, y, z axes. (The above
equations define a ¢-0-) sequence). w (i =x, y, z) are the measured body
rates. Logic must be included to swit¢h variables when 0 approaches + =/2.
Also required are the nine equations to obtain [T:] :

I
[Ts(t)] = | cos 0 cos¢ {sinzp sin¢ - sinf cosy cos¢}coszp cos®+ sinb cos¢ siny
|

sin 0 lcoszp cos 0 | -siny cos 8

R |
-C0sf sin¢|siny cos¢P+ cosy sin b sin¢ |cosy cos¢ - sinydsin § sin ¢

2. Direction Cosine Method, integrate the following nine differential equations:

sl 0] = [t)o] - (0]

where
0 - W
z y
[Q ] = w 0 -w
4 X
-w w 0
y X

no logic or additional equations are necessary
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TABLE B-I (continued)

ANGULAR EQUATIONS OF MOTION FOR THREE CLASSES OF PARAMETERS

3. Quaternian Method, integrate the following four differential equations:

q = - + +
9y = "1/2 0@ 9 *q, @t @)
) = + -
q1 1/2 (qO wx q3 wy q.?. wZ)
q = + +
p = V/2(dg0 tage +4q; )

1l

- +
dg = /20y 0 -9y @+ @)

where 92 o] , and q3 are the quaternians.

1’ 9o

Also required are the nine equations to obtain [ TZ]

[TSI(t)] =|q? 2(1, 9, - 9, 95) 2(a, 9, + 9, 95)

173

2 2 2 2
+ - + - -
2 (qo 4y + g, dy) 9 -9 *4, -9g 12 @y 95 -9, ql)

2 2

2 2
- + - - +
2 (q1 45 - d, q,) 2 (q3 q,* 9 qO) 4, -q; -9, * g

b

Direction cosines are a straightforward method of describing orientation of one
axis frame with respect to another. Solution of the difference equations involves only
multiplications and additions, and the resulting nine numbers can be used directly as
elements of [ T SI (t)] in resolving the sensed acceleration vector into the computational
frame (Table B-II). Thereis no singularity point or region prone to computational
errors as is the case with Euler angles. However, since only four of the nine cosine
numbers are independent parameters, computational errors in the integration of all
nine lead to non-orthogonality of the matrix [ Td(t)]. For short-term applications,
such as boost and injection of a missile or satellite, no correction is necessary for
this non-orthogonality. The error in solution of Equation (B-1) is no worse than if the
matrix [ TSI (t)] were orthogonalized regularly during the computations. When the




*

matrix [TSI (t)] is re-aligned in long-term applications, such as by stellar observations
or orbital gyro-compassing with a vertical sensor, logic should be included to insure
that the sum of the squares of each row and column of [TSI (t)] equal unity, This is
normally considered part of the alignment computation.

The quaternion method of describing angular orientation is based upon Euler's
theorem that any real rotation can be expressed as a single rotation through some angle
about a fixed axis. The four variables consist of a scalar, representing the magnitude
of the angle, and a unit vector, representing the axis of rotation. It has been shown
that geometric derivation of the Euler parameters and a derivation from a complex-
number approach (Cayley-Klein parameters) both lead to the same set of equations
describing the rates of change of the four variables as a function of the angular velocity
components (Reference B-5). Solution of these equations requires only multiplications
and additions, as in the case of direction cosines, and only four integrations. One of
the four parameters is not independent, subject to the unit vector condition of the
direction of rotation. Thus, similar orthogonalization considerations exist as in the
direction cosine case, although with somewhat less logic when it is desired to re-align
the attitude computations. Fewer instructions are required to implement the solution
of quaternion differential equations of angular motion than the direction cosine equations.
However, nine additional equations are necessary to convert the four quaternion param-
eters into the matrix [ T (t)] for use in Equation (B-2). Table B-II gives a typical set
of quaternion equations which would be implemented in the computer. Overall require-
ments differ only slightly between four- or nine-parameter systems from the standpoint
of computational requirements.
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APPENDIX C

CLOSED FORM SOLUTIONS FOR ANGULAR MOTIONS

The attitude computations of a strapdown system (using direction cosines as
parameters) consist of solving the first order, nonlinear, matrix differential equation:

d I _ I .
s [T,0] = [T 0] - [2] (C-1)

Because there is no known general solution to this equation, it must be numerically
integrated in real~time by using the data supplied by the gyros. However, analytic
solutions can be obtained for special classes of motions. Solutions have been obtained
and are presented herein for rotations about an axis with a fixed spatial orientation

and for a class of motions termed coning in which equal rate amplitude sinusoidal
oscillations ninety degrees out-of-phase appear along a pair of orthogonal axes with

an arbitrary constant rate along the third axis of the triad. These solutions provide

the essential means, the absolute reference, for evaluating the functional characteristics
and the magnitude of the errors incurred in the solution of equation (C-1) by open loop
numerical integration,

A. Solution for Rotations About a Stationary Axis

A solution can be obtained by means of a matrix algebra method applied to the
set of simultaneous linear differential equations with constant coefficients.
This matrix solution has two unique advantages in using it as the reference model for
an error evaluation of the numerical integration processes:

1. It requires only a single formal integration of a scalar quantity, the
magnitude of the angular rate vector, as opposed to nine direction cosines
and reduces the digital simulation running time and cost.

2. It provides a unified solution to the problem valid for any angular rate vector
whose magnitude function is at least piecewise integrable with respect to
time over the interval of interest and whose spatial orientation is time
invariant,



x

In the presentation of the solution upper case letters will be reserved to represent .
matrices and scalar quantities will be represented by lower case letters. The symbol
I will be used for the identity matrix.

The restriction of a fixed spatial orientation of the axis of rotation (defined, with
respect to the body axes, by its direction cosines: 11, 12, 13) reduces the general
expression for[ 2] to:

[2] =] o -1, 1, w(t) = Lo(t) (C-2)
1 0 -
3 o
-1 1 0
L 2 1 -

when w(t) is a scalar function of time. Using equation (C-2), equation (C-1) may
be rewritten as:

d/dt T =T Low(t) (C-3)
Defining 6 such that:

do/dt = w(t) (C-4)
the independent variable, t, in equation (C-3) may be replaced with 4.

d/do(T) = T+ L (C-5)
Equation (C-5) is easily solved for T by analogy with the solution of an ordinary

differential equation of the same form (by assuming a matrix power series solution
in t and solving for the coefficients):

TE) = ke ® (C-6)
where:
t
o@) = [w(r)dr (C-7)
o

The solution for T(t) is now complete although not in a very useful form for
evaluation. The remainder of this section will be concerned with developing an ex-
pression for the solution as a function of the initial conditions, L, and.@(t). The
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steps will consist of: first, defining the matrix exponential appearing in equation (C-6)
in terms of scalar exponentials; then, the matrix K will be defined in terms of the
initial conditions; and finally, the result will be reduced to the form specified above.

The exponential of a matrix appearing in equation (C-6) is defined in terms of
the series expansion for the exponential function, hence:

Lo(t X [ Lot 1
JLO0 _ > __#l (C-8)
i=o '
At this point it is convenient to define matrices L ., one associated with each
eigenvalue of L, Ajs having the following properties:

Z.XL. = &g which implies "~ = &L, (C-9a)
0 IS § Rt j j

=L =1 (C-9b)
j o3

ZaL =L (C-9¢)
P73

where §;; is the Kronecker delta. The matricesxi are called the constifuent idem-
potents ofJ the matrix I. The development of the definition of the idempotent matrices
is presented in Reference C-1.*

Using equation (C-9¢c), equation (C-8) may be rewritten as:
Lo — 0@ [ < i
e = Z - Z A ]ch (C-10)

il
i=o |

and using the orthgonality properties of the £ j's, {equation C-9a), this becomes

0 i 3 .

e YAV I S (C-11)

- i. - ] ]
i=o =1

*Reference C-1 Frame, J.S., "Matrix Functions and Applications, " Part I
IEEE Spectrum, April 1964 pp 102-108.
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Since the summation over j is finite, the order of the summations may be interchanged
to give:

N 1.
1=0

3 © i i
eLe(t) _ Z 'fj Z 6 (t)'AJ (C-12)
=1

The second summation is merely a power series expansion for the exponential function,
hence this expression may be rewritten as:

3 AL 6
eL@(t) - Z or.e ]
=

(C-13)

Equation (C-6) may now be rewritten using the expression for the exponential of
a matrix (equation C-13).

3 X 0(t)
) = K »,Lte

(C-14)
=

From equation (C-7) it is seen that 6(t) | t=0 = 0 and inserting this in the expression
for T(t) (equation C-14), one obtains:

3
T(0) = K E; L. (C-15)
=

Using equation (C-9b)
T(O) = K

The solution to T(t) has now been reduced to a summation of products of scalar ex~
ponentials with the constituent idempotents of L and the matrix K defined.

3 A 6()
) = TO) ), Le I (C-16)
=




The eigenvalues, ) j? of the matrix L are computed from the defining relation for
the eigenvalues of a square matrix:

LX = )X
which may be rewritten as:
L-IXX =20

Since this homogeneous equation possesses nontrivial solutions (X # 0) if and only if
the determinent of the coefficient matrix vanishes, the eigenvalues may be determined
from the characteristic equation:

2 2 2
(L -] =0 =2+ 1 + 1 +17)

3
Using the fact that Z 12i = 1 the eigenvalues of L are
i=1

>\1 =0 7\2 =1 and A3 = - (C-17)

Since the eigenvalues of L, independent of the orientation of the axis of rotation,
are all distinct, the constituent idempotents associated with each eigenvalue may be
computed from:

3

- (L-2T)
Ly= T (C-18)
k=1 j k

k*j

The derivation of equation C-18 is presented in Reference C-1*. The constituent idem-
potents associated with each eigenvalue (equation C-18) of L are therefore

., =0; L =12+ (C-19a)
1 1
Ao=i; L = -~@?+ iL) (C-19b)
2 et 2
= 1e = _l 2 i -
Ag = i 13 5 (L7 - iL) (C-19¢)

*Reference C-1 Frame, J.S., '"Matrix Functions and Applications," Part II
IEEE Spectrum, April 1964 pp 102-108.



Inserting equations (C-19a, b, c) into equation (C-16) we may write the solution in a
more useful form:

) = o) [ 12+ 1 —%(LZ + in) 70 --;-(L2 - iL) & 100
which upon rearranging terms becomes:
T = T [I+ L2 (1 -cos 0(t)) + Lsino() | (C-20)

As an example of the use of equation (C-20) consider a constant rate of rotation,
a, about the z-body axis with the body axes initially coincident with the inertial axes.
For this case,

w(t) = a
11=0,12=0,13=1
T@O) = I

Inserting these values into equation (C-20) using equations (C-2) and (C-7) and
collecting terms,

T@¢) = cos (at) -sin(at) O
sin ( at) cos(at) O

0 0 1

B. Solution for Coning Motion

Coning motion can be described by an angular rate vector with sinusoidal com~
ponents of the same frequency and some phase difference along two axes of an orthogonal
triad and an arbitrary constant rate along the third axis. ''Classical'' coning motion
results when the constant rate component is specified in terms of the amplitude and
frequency of the sinusoidal components such that the triad of body axes returns to its
initial orientation after each cycle of the sinusoidal motion. This motion has an
important part in studies of attitude computational errors due to multiple axis motions
of the flight vehicle. The results contained in this section provide a continuous truth
model for digital simulations of this motion.
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The motion considered consists of equal sinusoidal amplitudes with a ninety degree
phase difference. It may be described by an angular rate vector as follows:

w = |jasin Bt

acosft
Y

It should be stated at this point that the particular order of the components of the rate
vector is arbitrary and any permutation of the components is also amenable to solution
in a manner identical to that to be developed.

In forming the product [T] [2] of equation (C-1) one finds that the rows of [ T]
are independent and all have the same form; therefore, it is only necessary to solve the
equation for a typical row as the solution for the other rows will be of the same form.
for the ith row therefore:

= T - T a C-
’l‘i1 i2 v% i3 cos Bt (C-21a)

—_— - 1 —
’1‘12 = ‘I‘il vy t ‘T[13 @ sin Bt (C-21b)
I =T « -T i -
Ti3 i1 cos Bt i a sin Bt (C-21c)

Starting with equation (C-21c), differentiating once with respect to time and in-
serting (C-214) and (C-21b), one obtains

e 2
= - a + - i + T
T T a(y - B) [Til sin Bt ;

i3 cos Bt (C-22)

2
Differentiating again, using (C-21a) and (C-21b), and collecting terms, one obtains
e 2 2
-+ -+ - = 0—23
Tg* [+ (v -] T, =0 (C-23)
The characteristic equation associated with equation (C-23),
3 2 2
ATt afet (v -] =0

has three roots,

- . 2 2 .
7\1—0 )\2,3—&:1‘/& + (y -B) = #i¢
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which yields a general solution of the form:

TiS' = A+ Becos§(t+ Cosintt (C-24)

where the coefficients A, B and C are evaluated from the initial conditions.

Having obtained the solution for Tj3, wWe now turn to the solutions for Tj; and Tjo.
Differentiating equation (C-21a) once and inserting the expressions for Tjs (equation
C-21b), Ti3 and Tjg3, one obtains for Tj1 after collecting terms:

. e 2

4 = + i C-25
Ti1 Y Til A(B+ y) asinBt ( )
+B(a/2) (B + yt+ &) sin(B+
+B (a/2) (B + v - £) sin(B - &)t
-C (@/2) (B + v+ £) cos(p+ £
+C (@/2) (B+ v - g) cos (B - £t
Using a similar procedure beginning with equation (C-21b) one obtains for Ti 9

Tiz + sziz = A (B + V) acos pt (C-26)
+B (@/2) (B+ 7Y + £) cos(B+ &)t
+B (@/2) (B+ Y - £) cos(B - &)t
+C (a/2) (B+ v + ) sin(p+ )

-C(a/2)y(p+ v - &) sin(p - &t

The solutions of the homogeneous part of equations (C-25) and (C-26) are identical, with
characteristic equations
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Hence the general solutions for Ti and Tiz are given by:

1
= K + i t -
Til 1cosyt L1s1n‘y (C-27)
= + i -
Ti2 K2 cosyt L2 siny t (C-28)

The particular solution corresponding to the forcing function on the right hand side of
the appropriate equation (C-25) and (C-26) must be added to these solutions to produce
the complete solutions for Til and Ti 9*

The particular solutions to equations (C-25) and (C-26) may be found quite easily using
the method of undetermined coefficients. Adding these particular solutions to the
general solutions (equations C-27 and C-28) completes the solution for the ith row for
the case a =0.

T = K cosyt+ L_sinyt -

Q .
i1 1 1 A (ﬁ——?’_) sin Bt (C-29)

+

Ba?+7+§) sin B * £)t
2(v -+58))

; Be@try -8)

sin (B - &)t
2 (v -~ £)°)

- Ca(g+‘y+% cos (B + £)t
2y -(Bt&))

+ Capry-£) cos (B - &)t

2 (y2 - (- 8))
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T, = K,cos yt + L, sinyt- (:f’y) cos pt (C-30)
+ Ba;ﬂ"l')/'*' 5)2 cos (ﬁ+ E)t
2(v -+ &)
+ Ba(2[3+'y—§)2 cos (B ~ &)t
2(y -(B- &)
# 22BTYTE) i g
2(y -(B+8))
_ Ca(2ﬁ+y—£)2 sin (B - £)t
2(y -(p-8)")
T, = A+ Bceos £t + Csin £t (C-31)

i3

Where A, B and C are understood to carry the subscript i and are evaluated by
equating the above result to corresponding row in the initial condition matrix

I =
[TS (t=o) ].

Substitution of equations (C-29), (C-30) and (C-31) back into equation (C-1)
yields the additional restriction that

C-10




. APPENDIX D

DEVELOPMENT OF THE COMPUTATIONAL ATTITUDE
ERROR PARAMETER

The attitude computations of a strapdown navigator are used to:

(1) resolve the output of the accelerometers into the navigation or computational
frame and

(2) to resolve the vehicle attitude commands from the computational frame into
the vehicle coordinate system, The attitude error at any time of flight can
; be described in terms of small angular misalignments of the mathematical
| vehicle (defined by the computed attitude) relative to the actual vehicle (defined
‘ by the reference attitude):

i'a &
| . 1 -y B Y’
[Tb,] =|ly1l-«a ‘; D-(1)
-Bal M
) S
where A
Xl

| [tl1=[7]

T b

T P

computed - [ b] reference [Tb' b-(2)

The error of interest is that encountered in transferring a vector from one coordinate
frame to another. This error in transferring the vector can be defined in terms of «,p

and ¥ :
[ATIIO] - [ b] computed - [T{)] reference D~(3)
or using equation (D-(2))
o~y B
[am] =[], ° {[Tb‘:] - [1]} = [Tl |7 o-epw
- o o



For resoving accelerometer data into the inertial frame, the resulting error vec-
tor takes the form

-1 I o-v P b -1
aa- = | Tb:I ref Yy o -« [ TI] ref =~ 2 D-(3)
-B o o

For resolving vehicle commands from the computational frame into the vehicle
frame, the error takes the form

Ad o vy -B

b —1
A© = |-y o al - [TI] ref Command D-(6)
AY B -a o

Thus, the properties of the total attitude error whose components are «, Band ¥y
(the attitude computational errors) are of extreme interest. The remainder of this
appendix will show that the norm of the attitude error matrix, Equation (D-3), is pro-
portionate to the root-sum-square of the three attitude error angles. The norm of the

attitude error matrix is defined by

Norm = 2 E [A cos (i, j)]2 1 - EBRTU
i ] =X ¥,z
where
A Coa . _ L —
cos (i, J) cos (i, j) cos (i, j) reference D-(0

computed
obtained from

I I I
A = -
[ Tb] [ Tb] computed [ Tb] reference




. The substitution of equation (D-4) into (D-7) yields

o-y B
I
Norm = Root-sum-square [Tb] rof y\ 0 -« (D-8)
-B o o

Carrying out the multiplication within the brackets and performing the squaring
and then the summing of the squared elements yields

Norm = { o% [31 - ¥t &t &1+ @ (2T 2Te R R

s o® [ty o5 - evegt - 2Y) - zay ! 2D

N
- zap@E - FH} (D-9)

1
=‘/2—(a2+ﬁ2+y2) /2

Thus the norm of the attitude error matrix defines the total angular error of the
computational process.



APPENDIX E
ANALYSIS OF CONING MOTION

A. Introduction

Coning motion, in which two axes of an orthogonal triad experience phase shifted
sinusoidal motion at the same frequency is an extremely important class of multiple-
axis motion in the performance evaluation of inertial systems. This motion has been
observed in single axis vibratory tests of gyros, on centrifuge testing devices, in
gimballed inertial navigators because of their gimballed degrees of freedom, and may
well be applicable to a strapdown system due to vehicle coning motions about pitch, roll
or yaw axes or vibratory modes of the structural member to which the strapdown inertial
measurement unit is mounted. An important characteristic of this motion is the coup-
ling of the sinusoidal rates about the two axes through the mechanical restraint of the
sensors relative to the vehicle that produces a constant rate along the third orthogonal
axis. This property of the motion could lead to unbounded errors in the attitude refer-
ence if the sinusoidal motion is above the bandwidth of the gyros or the computational
process.

The present appendix extends the analysis of this motion on a linearized basis to
a more general case than that contained in Appendix C using an approach similar to the
quaternion method for the solution of the angular equations of motion,

B. Analysis

A rigid body possessing an arbitrary angular motion about a fixed point may, at
anytime, be returned to the position it occupied at time zero by a simple rotation.
That such a rotation about an axis fixed in space exists is ensured by Euler's theorem
of kinematics. The angular components of this rotation to return the body to its
initial orientation about each of the body axes ¢ = (tbx, ¢>V, ¢>y), are defined by the
expression developed in Reference E-1: )

t
= T -
¢i j; w dT + A & 207 (E-1)

where w, is the time varying angular rate about the i’Ch body axis; A, is the area traced
out by this body axis on the surface of a unit sphere centered at the fixed point (assumed
coincident with the origin of the body t%oordinate system). This area is defined by the
curve produced by the motion of the i body axis from time zero to the present and is
closed by the rotation ® that returns the body to its original orientation. Ai is the solid

*Goodman, L. E. & A.R.Robinson, ""Effects of Finite Rotations on Gyroscopic
Devices, "' Journal of Applied Mechanics. June 1958 pp 210-213



th
angle defined by the motion of the i body axis and ¢. This solid angle nrOV1des a means
of evaluating the output of a gyro that has its input axis parallel to the it body axis

ftw.dT.
o 1

The solid angle A must be evaluated as a function of the history of the body
motions. With reference to Figure E-1, which illustrates the goemetry of the problem
assuming that at time zero the body frame and the inertial frame were coincident, the
area AZ (tbe same equations can be developed for AX and Ay) may be written as:

A = @ dA
Z o z
ot) 8O (E-2)
A = f sin PdpBdo
Z eo °

Defining, 11, 15, 1, as the direction cosines of the axis of the rotation ¢ with respect

to both the body axis and inertial axis. (The direction cosines 1y, 15, 15 are the com-
ponents of the normalized eigenvector corresponding to the unit eigenvalue of the matrix
describing the rotation ®.) An expression for P as a function of the rotation ¢ may be
obtained by applying the law of cosines to the spherical triangle formed by the intersection
of the axis of ®, Z and z with the unit sphere.

cos P = cos ® + !Z; (1 - cos @) (E-3)

For small angles this may be approximated by

= (1] +12)1/2 o

1/

W
1

(E-4)

W
|

‘(¢ +¢)

Using the small angle approximation, the expression for Az may be written as

o(t)
2@ d o (E-5)
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Figure E-1 Geometry of the Solid Angle
which, by the two dimentional Green's theorem, is equivalent to :
t
Az=§f o 9% _ 4 9% ) g1 (E-6)
° \*a4ar Y ar

This expression and equation E-1 provide a convenient means of obtaining the gyro out-
put as a function of time, t, from a knowledge of @ (t), where @ (t) is simply the rotation
necessary to return the body frame to coincidence with the inertial frame at time (t):

-+
o+

fwd'r=¢z-

Z
o]

DN =

dr y dr

f (q>x dby _ o d¢x) dr (E-T)
0o



Differentiating, an expression for rate that would be sensed by the z gyro is obtained

d 1 d 1 d
© =——¢Z--¢K_¢X + = J’.’S. (E-8)
dt 2 T at 2 Y gt
Similarly for @ and w :
X y
© =_2.¢x _ 1 $ d ¢z +1‘¢z d oy
o 2 Y & 2 dt
(E-9)
d 1
w = — ¢ - = dé¢ 1 do
y dt y 2 4)z =+ - ¢x z
dt 2 dt
C. Generalized Coning Motion
A rotation ® of the form
¢ = (ax sin wyt, a, sin (wlt - ¥), o)

corresponds to a general form of coning motion, This is shown by using equation E-8
and E-9 to determine the rates along each body axis:

€
{

-(d_¢x, LI [¢X ey ¢y'_‘?_‘i’&]>
dt dt 2 dt dt (E-10)

€
1

(BX cos w,t, By cos (wlt - ), wz)

The resulting rate vector consisting of phase shifted sinusoids along two of the body
axes, is immediately recognized as a general form of coning motion with the z gyro
coning. The rate sensed by the coning gyro is:

1 R
w = - ; a aywl cos (wlt - ¥) sin wzt

1 -
+ ; a ay w, sin (wlt ¥) cos wzt

E-4




w = -

1
cz ) ozx ay [(co2 - wl) sin ((oo1 + wz) t - ¥)
(E-11)

+ (wz + col) sin ((col - 2) t - Zl))]

This rate produced by coning motion is of considerable interest as the time average of
this rate demonstrates the presence of an unbounded term that introduces an error in
the attitude system when the frequency of the sinusoidal motion producing it, is beyond
the bandwidth of the gyros or the computational process. The attitude computational
process simply does not reconstruct attitude properly as a function of time. The time

average is defined by:

c li 1 T
<@ = M = f o« dr (E-12)
Z zZ
T=—>»® T 0

Substituting Equation E-10 for w0 and performing the integration yields:

c lim a, a w, - W
<wz>t = s X7y { 2 1 [coszp-cos((w1+w2)T—zp)]
4T w +w
2 1
(E-13)
w. + w
+ 2 1
— [ cos ¥ - cos (o + w) T - lP)]}
1 2
hence, for w, * 9 lim =,
1 T =00
and for w = W
T T
1lim f w d T = lim lim fo o dr
T—© °c =z T > ml/w2—>1
= }oz a o sin P
2

E-5
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Therefore, the time average of this ""coning rate' may be written as

c 1 :
= k - - i -
@ & ( 1) a ay w sin ¥ (E-14)
2
where k = 21 and 6<k - 1> is the Dirac delta function,

©

Similarly, the gyros may also experience a random spectrum of angular rate
whose phase relationship may produce coning motion. It is necessary to evaluate this
error (equation E-12) over a spectrum of random angular motions. Such an evaluation
may be made by integrating equation E~14 over frequencies above the gyro bandwidth,

) o
. approximating M by the angular rate power spectral density, ¢ (v),

bw w
and assuming that
0 0
c C
<f o do> = [ <& do
W W
w bw

For sin ¥ = 1 (a constant ninety degree phase difference at all frequencies)

00
¢
Total drift rate = J  — 4o (E-15)
wbo w

The spacial distribution of these sinusoidal inputs is also of interest and the total error
may range from 0 for a random spacial orientation to that expressed in equation (E-15)
above for a fixed orientation during a flight. The peculiarities of the spacial distribu-
tion are a function of the origin or source of the motion that creates the vibratory modes
of the structural member to which the inertial measurement unit is mounted and must be
analyzed individually for each vehicle.
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2. Vibratory Motions

The angular environment in which a strapdown system must operate is composed
of discrete motions and a vibratory environment. The vibratory environment consists
of sinusoidal and random angular motions. The truncation computational error under
a vibratory environment exhibits the same characteristics as observed for discrete
motions, namely, higher order integration schemes offer significant improvements
with regard to increased accuracy and reduced computational frequency relative to
lower order integration schemes.

In analyzing the computational error due to a vibratory environment, the angular
motion that the computational process must follow is that passed on to it by the gyro.
For example, if the vibratory environment is specified at the strapdown sensor package
mounting shelf, the vibratory motion that the computer must process is the specified
environment multiplied by the sensor housing transfer function and the gyro transfer
function.

Analytic and digital simulation studies have been used to derive the error models
for the truncation error under a vibratory environment. The error models obtained by
both approaches agree very well. The determination of the truncation error in a vibra-
tory environment lends itself to an analytic evaluation because the attitude computational
process possesses the property of superposition that has been verified by digital
simulations (see Appendix F.) Therefore, the error models that were derived for the
discrete inputs discussed in the previous section can be readily extended to vibratory
inputs.

The truncation error for a single sinusoidal input about an axis of rotation fixed
with respect to the vehicle can be described (Table IV-I) by:

o b .drf
C —fckaﬁ sin (2fc)

where ka and the exponents of the sinusoidal angular amplitude, and the frequency
ratio, b and d, respectively, are dependent upon the order of the integration schemes
(Table IV-I); fc is the number of integrations performed per second; while, f, is the
frequency of the sinusoidal input. For multiple sinusoidal input, the total truncation
error for any integration scheme is given by

m f
L b . dfmn
¢ _kafcz_ﬂn sin (Zf )

n=1 ¢

Tv-2k




Similarly, the truncation error expressed in terms of a total drift rate for a
random input described by a power spectral density, ¢ (f), can be described by the
equations of Table IV-II derived in Appendix F.

These analytic models agree with the results of digital simulation studies,
differing essentially by a constant (a factor of 3) for all cases in which the compu-
tational frequency was higher than an appreciable portion of the frequency range of
the vibratory input (f >. 1f ) wherein the random input extended over a region of
frequency from zero fo fo' This comparison is shown in Figure IV-15 with the analytic
models adjusted by a factor of three. When the frequency range of the vibratory
input extended beyond that of the computational frequency (f >>f ), the analytic model
yielded an optimistic estimate of the error. This region however is usually not of
interest in a well designed system. The magnitude of the power spectral density
used in this study was 0. 55 (rad/sec)”/cps, an extremely large value by orders of
magnitude, compared to flight environment. A large value was employed to emphasize
the truncation error relative to the round-off error.

A similar analytic error model was developed (see Appendix F) for coning
motion caused by a vibratory environment. These models are presented in Table

IV-III. Digital simulation studies to confirm these models were not performed
as it is highly unlikely that coning will occur other than at discrete frequencies

associated with the resonance points of mechanical systems,

TABLE 1V-TI

COMPUTATIONAL TRUNCATION ERROR FOR ANGULAR VIBRATION
MOTION ABOUT AN AXIS OF ROTATION FIXED WITH RESPECT TO THE VEHICLE

Rectangular Integration Scheme

7|'f0

-, deg 17 of e sin' T
CR0e) " an ¢ ¢(1r sz 07

0
2nd Order Runge Kutta ¢

_9 T
& =01 [ 2 2\ sin'r
2 2 c ¢ ( r r4
16m f
C %o

4th Order Runge Kut‘cz;r ¢

o} 2f 1 6
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c
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TABLE IV-III

COMPUTATIONAL ERROR FOR RANDOM VIBRATORY CONING MOTION

Integration Scheme Eo/fC < .8 [O/fc .8
= 321 1 [
Rect C 5 f o(f)df
2T c o
l.o
= 408 1 = 730" 0
2ndorder RK ¢ = == = [ fe(hyar ¢ = = 28
2 .2 2
2 f T . 8f

4th order RK

646 1 3 o e
—_— f) df
s few
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These analytic models are conservative estimates of the truncation error due to
coning produced by a random environment since it assumes that: (1) coning occurs

at all frequencies rather than at discrete frequencies that are usually associated with
points of resonances of the mounting shelf or the sensor package attachment structure,
(2) the amplitude of the variable rate components on each axis are always the maxi-
mum values described by the power density spectrum of each frequency, (3) the
phase difference between the two variable rate components is ninety degrees so as

to produce the maximum error, and (4) the spacial orientation of the input vibration
is fixed relative to the vehicle so as to again maximize the error. In actuality, for
the computational error estimated for coning motions to have any meaning or validity,
each particular vehicle and flight environment must be evaluated individually. Once
the environment is known, the analysis is straightforward. If coning does occur at
discrete frequencies, the error is computed by summing the errors at all of the
coning frequencies. If the coning amplitude is random rather than a continuously
maximum value, an average over amplitude and frequency are required. If the

phase angle is different than ninety degrees or a variable, a time average of the sine
of the phase angle becomes a coefficient of the equations of Table IV-III (Appendix E).
Finally, if the spacial orientation of the coning input is random, an integration over
orientation is required.

3. Sensor Associated Errors

In the performance evaluation of a restrained gyro strapdown navigator,
there are a few sensor loop associated errors that must be analyzed on a system
basis. A system type of analysis is required as the sensor loop errors in more than
one channel combine to distort and change the type of motion that is passed on to
the computer. For example, these errors can change the motion from one of angular
rotation about an axis fixed relative to the vehicle to one of angular rotation about
an axis that is rotating relative to the vehicle. The attitude computational process,
even if it were perfect, cannot undo the error that has been created. Three sensor
loop errors of this type have been analyzed: (1) finite gyro bandwidth, (2) unmatched
gyro loop frequency response between the three gyro loops, and (3) gyro output axis
acceleration sensitivity.

a. Finite Gyro Bandwidth

The finite bandwidth characteristics of the strapdown gyros cause two naviga-
tion errors. First is the attenuation, beyond the bandwidth of the gyro, of the
angular environment applied to the sensor package. This represents true angular
motion of the accelerometer input axes that should be followed by the gyros in order
to correctly resolve the accelerometer outputs into the inertial frame. Second is
the error introduced if vehicle coning motion occurs at frequencies beyond the band-
width of the gyro; the two sinusoidal or variable rate components will be attenuated
by the gyro loops and not seen by the computer while the constant rate component
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(zero frequency) will be passed on to the computer. This results in a drift rate of
the attitude reference equal to the value of the constant rate component. The errors
for each of these cases are derived in Appendix G.

The mean square error in the system's knowledge of the orientation of the
accelerometers’' input axes due to the attenuation of the magnitude of the angular
motion by the finite bandwidth of the gyro loops is

— 0
62 =L 1 s 2IGS(jw)I2 23 d
o Tar) [1-6,(Ju)] —S—5— ¢ lie)do

where Gg is the structural transfer function between the gyros and the sensor
package's mounting surface on the vehicle, ¢ is the random angular rate power
spectral density at the mounting surface and Gg is the gyro loop transfer function.

This mean square angular error contributes an error in the transformation
of the accelerometer outputs from the vehicle to the inertial computational frame.
For a strapdown system this error has components along the roll vehicle axis
of magnitude

2

AF = F-(e’e)

where F is the applied specific force and AF is the resulting error.

The total drift rate due to coning motion beyond the bandwidth of the gyro is
the second error that must be considered. If coning occurs for all frequencies,
the error induced can be described by:

1
g2

o0
w (drift rate) = /[1 —Gg(jw)]z G, (ie)12 ¢ (0) Inw d

o]
b. Unmatched Gyro Loop Frequency Response

For a triad of restrained gyros whose transfer functions differ slightly, the
application of a sinusoidal angular rate whose axis of rotation is fixed relative to
the sensor package and is noncollinear with the gyro input axes, creates a distortion
of the true angular motion. The processing of this distorted motion by even a per-
fect attitude computation yields an erroneous knowledge of attitude (Appendix G). '

The effect of differences in amplitude response between the gyro loops is to
change the magnitude and spacial orientation of the applied rate. However, the true
and distorted motion cause the body to return to its initial orientation periodically
so the error introduced into the knowledge of attitude is also periodic and bounded.
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The effect of differences in phase response causes an error that is characterized -
by two parts of different behavior. First, there is a term that introduces a periodic,
but bounded, error in the knowledge of attitude. It is identical in behavior to that
which occurs for amplitude response differences. Secondly, there is the creation of
an error rate vector of constant magnitude whose axis of rotation rotates relative
to the sensor at a constant frequency equal to the frequency of the applied sinusoidal
rate. This erroneous rotating rate vector causes an unbounded attitude error whose
rate of growth is proportional to the phase differences between the loops and the
amplitude of the sinusoidal rates that are passed onto the computer (Appendix G).

c. Gyro Output Axis Acceleration Sensitivity

Single-degree-of-freedom gyros not only measure angular rate about the
input axis, but they are also sensitive to accelerations about the output axes. If
angular accelerations are applied about the output axis of a gyro, an erroneous rate
signal will be created that will be processed by the attitude computations. For a
strapdown IMU that is subjected to a sinusoidal angular rate about an axis parallel to
the input axis of one gyro and the output axis of another gyro, the combined outputs
lead to a divergent error in the knowledge of attitude even with a perfect attitude
computational process. This drift rate in the knowledge of attitude is proportional
to both the output axis inertia to angular momentum ratio (Io/H) and the square of
the amplitude of the applied sinusoidal rate («); it is independent of the frequency
of the input motion up to the bandwidth of the gyro (the error model is derived in
Appendix G):

W (deg/hr) = 30.8 L;_;__ [« (deg/sec)] 2

Beyond the bandwidth of the gyros, this error falls off rapidly due to the loop's
normal attenuation of high frequency signals. This error in gimballed platform systems
is termed output axis coupling. The same name can be carried over into the strapdown
navigator. The error arises because the signal from the gyro whose output axis
is parallel to the sinusoidal rate lags the signal output of the gyro whose input axis
it parallel to the sinusoidal rate by ninety degrees at all frequencies and, therefore,
produces a pseudo coning type of motion, The combined effect of the two signals
is to create an angular rate error vector whose magnitude varies with time and
whose axis of rotation rotates with respect to the sensor package at the same fre-
quency as the applied sinusoid.
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B. Free Gyro Attitude Reference System

The computational proczss for determining attitude using two free gyros, each
possessing a minimum of two readouts, consists of measuring the orientation of the
spin axes of the gyros relative to the vehicle and the formation of the matrix relation-
ship between the spin axes coordinate frame and the vehicle. Initial alignment of the
spin axes with respect to the desired inertial reference allows the navigation system
to determine the orientation of the vehicle relative to inertial space. An example of
this computational process is presented in Table III-III.

Each time that attitude is desired, the orientation of the spin axes in the vehicle
frame is measured anew; therefore, the computation error is associated with each
individual determination of attitude and is not cumulative with time, The computa-
tion errors for free gyro systems are those associated with the reduction of the optical
readout data, which are measurements of lapsed time between crossings of lines in-
scribed on the rotor under the optical readout. When great circles are scribed upon
the rotor, the reduction of the readout data involves square root and trigonometric
functions. The magnitude of the error in these computations is influenced by thé
approximations used for the square root and transcendental functions and computer
word length, The latter may be eliminated by using scribe lines that yield output time
intervals that are already trigonometric functions of the vehicle-spin vector orienta-
tion but at the expense of more difficulty in the fabrication of the rotor.

The accuracy in computing trigonometric functions depends upon the form of the
numerical trigonometric approximation, the number of terms used in the numerical
approximation and the computer word length used to implement the numerical process.
Chebyshev approximations of trigonometric functions readily lend themselves to
rapid and accurate computations in digital computers and are widely used in the aero-
space field. Typical approximations of trigonometric and inverse trigonometric func-
tions are approximated by a truncated series expansion. The most commonly used func-
tions are the sine expansion for computing trigonometric functions and the arctangent for
computing inverse trigonometric functions. (The arctangent function is included
because such a function is necessary if Euler attitude angles are to be derived from
free gyros). The Chebyshev approximations provide adequate accuracy for a mini-
mum number of computer operations. The form of the expansions are (Reference 11):

arctanX=C1X+C3x3+C5x5+... ; 1€ x<1
. T 3 5

—X = + + + -1 <
sin =5 C1X C3x C5x , 1< x<1
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Figure IV-16 presents the typical behavior of the error in terms of the argument
and tabulates the maximum error as a function of the number of terms in the series.

The number of zero crossings for the arctangent function error is one more than
the number of terms in the series; for the sine function error the number of zero
crossings is equal to the number of terms in the expansion.

In order to maintain the inherent accuracy of the trigonometric approximations,
a sufficient word length must be employed. The choice of word length must ensure
that the cumulative round-off error in the calculations is less than the approxima-
tion error. The minimum round-off error that can be expected after a series
of calculations is equal to the value of the least significant bit used in the calcula-
tions. Usually the round-off error is larger than this with the error depending
upon the number of operations and the numbers operated upon. To evaluate the error
due to word length, digital simulations were employed. Figure IV-17 depicts the
average error for a four term arctangent approximation (in the regions of maximum
error) as a function of word length. Also shown in this figure is the error predicted
by assuming that the error is equal to the least significant bit employed in the compu-
tations. It is seen for a four term expansion, that four additional bits are required
beyond the number indicated by employing the value of the least significant bit itself
as an error guide.

Also required in the free gyro computations is a square root process. For
typical digital computers, the square root is an available instruction. The usual
error encountered in forming the square root is 2-(0n+1)/4/ "X where X is the number
whose square root is to be obtained and where n is the value of the least significant
bit of the number used. If a square root instruction is not available, it must be
solved by a computational subroutine. An example of such a process is the Newton-
Raphson iterative method. Figure IV-18 defines the numerical process and pre-
sents the error as a function of word length; the maximum error cccurs for values
of numbers near zero. Table IV-IV tabulates the number of iterations required to
converge to the region of the word length error as a function of the magnitude of the
number whose square root is desired. It is seen that the number of iterations is
inversely proportional to the magnitude of the numbers for the range presented.
More iterations are required for lower numbers because the Newton-Raphson method
is based upon the secant approximating the tangent.

Additional computational errors in the solution of the free gyro attitude
equations arise when single sets of optical pickoff data are too noisy to permit
accurate determination of attitude; thus, several sets of measurements must be
taken and smoothed. This requires solution of the equations over a finite time
period, which introduces errors due to vehicle motion. These errors can be reduced
by fitting a polynomial to the angular data over the selected smoothing integral. A
higher order polynomial would reduce the errors at the expense of increased computer
complexity.

. Iv-32




€T72-99

X
g-OT X6
§-0T
T

50

suoriewIK0Iddy 0111oWOoU0S1L ], JO SOSLINNBIRYD J0IIH  9T- Al oIn31d

q0949d
WANIXVIN

0T X7V
0T X3
0T X3
0T XT
0T X8
0T X9

SWYdL A0
HIdNAN

mn < 1 O b~ ©

HOYYH
IWNNIXVIN

SINYIL 40
UIINAN

o

X

AV,

NOILONAJA INIDNVL DUV

e

T000°~

1000°

S000°~

000"

dONTVA I0¥L /(ANTVA INYL - NOILVINIXOHdJ V)

dNTVA HNYL - NOLLVINIXOHddV

1v-33



1222-99

s1011y TeuUoIIEINdWIO)) O1I}oWIOU0SILT, U0 YISUaT PIOM JO 30053H  LI- Al oanSig

0¢€

SI1q = HLDNAT ddOom

(8

N\

AN

K q0oyg4ad
IWNWININ J0 |

/ NOLLOIAAHd

\OHHV_.H<Z<
/ |

NOILVHNIXOdddV

INIDONVL DYV NYAL ¥
J0

NOILVTANWIS TVIIDIA

\ |
|

0T

0g

0¢€

oy

0S

09s oaB ~ JO™UHdd TYNOLLVIONAINOO

v-3k
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Figure IV-18 Computer Square Root Routine Errors vs Computer Word Length
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The solution of the free gyro equations involves a matrix inversion for the
final solution [Tzizl;lal (t)]. As shown in Table III-ITI, the inversion would be of

the time variant matrix [T (t)]. Considerations of solution time would
spin vector

force a compromise of accuracy if this inversion were to be made at the solution

rate necessary for resolving accelerometer data. However, by utilizing the fact

that the body to inertial matrix transformation is orthogonal and its inverse is

equal to its transpose, the final equation of Table III-III can be rewritten as

T
inertial b I -1
= :0
[ Tbody ®)] [[ Tspin vector(t)] [ Tspin vector (t=0)] ]
so that only the inverse of the constant matrix [ TI (t=0)] need be taken,

spin vector

which can be done each time that the gyro alignment is obtained either at prelaunch
or in flight by stellar measurements.

TABLE IV-IV

NUMBER OF ITERATIONS FOR CONVERGENCE

X Error
For 22 Bits
1 5 .41 x 1079
.2 4 .27 x 107
.3 4 .26 x 109
.4 4 .12 x 1070
.5 3 .11x10°5
.6 3 .24 x 1079
7 3 .15 x 10™9
.8 3 .18 x 1079
.9 2 .15 x 1079
1.0 1 .1x 1079

v-36




.

C. Free Accelerometer Reference System

The motion of a free pendulous gyro accelerometer's input axis is caused by
the linear acceleration applied to the vehicle that acts upon the pendulous moment
along the spin axis and thus causes the input axes to precess with respect to inertial
space. The applied acceleration during thrusting phases of flight can be divided
into a constant thrust component and linear random and sinusoidal vibrations. The
computational frequency or accelerometer transfer rate is governed by the magni-
tude and frequency content of the linear vibrations; the constant thrust component
of acceleration causes a very smooth and easily followed precession rate. Any
significant linear vibration at frequencies beyond that of the accelerometer data
transfer rate results in an angular uncertainty in the knowledge of the accelerometer
input axis and thus an improper resolution of the main thrust acceleration into the
inertial computational frame.

The coordinate transformation error is an unbounded position and velocity
error growing with time for it acts as uncertainty in knowledge of the accelerometer
input axis just as if it were an electrical or mechanical uncertainty within the sensor
itself. It should be treated as such in the analysis of the system's errors.

The motion of the spin and hence the input axes of a free pendulous gyro accel-
erometer is described, with respect to inertial space, by the following vector equa-
tion d ®_.P = =

TG (S) - T (S X F)

where the spin axes precess at a given rate for each unit of applied specific force,
F. The magnitude of the accelerometer '"scale factor' is determined by the magni-
tude of the pendulous moment (P) and the magnitude of the angular momentum, H.

The mean square angular motion of the input axis in the presence of a linear
ergodic vibratory environment is defined by

2 2
_ 1 P f
6° = Zf ) o)
2
fa

where ¢ is the linear power spectral density expressed in units of Sz/cps. Because
the coordinate transformation is performed at a finite rate, the motion of the input
axis will not be precisely followed. The mean square angular error is thus the dif-
ference between the actual motion described by the above equation and the motion
followed by the coordinate transformation process. With the transfer function of the

transformation process indicated by G, the error in knowledge of the orientation of the
input axis is
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For a linear vibratory input which has a significant amplitude that extends over
a frequency band that is significantly wider than the accelerometer data transfer
frequency, f., the above equation can be approximated by

2
P
o) 2«
f

m
[OR
Il
—
[\
-
O\

in which the transfer function G is assumed to be unity out to the frequency with
which the transformation is performed, and is zero at all frequencies beyond this
value.

With the specification of the power spectral density of the linear environment
for each mission, the mean uncertainty in input axis orientation can be evaluated
and the resulting error in the measurement of acceleration computed. If the error
is unacceptably large or unnecessarily low, the transformation frequency or the ac-
celerometer scale factor, (P/H), should be suitably modified within the limits per-
mitted by the state-of-the-art.

The transformation frequency requirements dictated by this analysis are inde-
pendent of whether the gyros are free or restrained. If free gyros are employed as
the attitude reference, the acceleration transformation frequency requirements dic-
tate the minimum attitude computational frequency. If restrained gyros are employed
as the attitude reference, the transformation frequency requirements dictate not only
the minimum attitude computation frequency, but also the minimum acceptable band-
width of the gyros. This arises because the attitude computations can only follow
the output of the gyros and thus cannot operate upon the signal attenuated by the band-
width limitations of the gyro. All that increased attitude computational frequency will
provide with gyros of finite bandwidth is 2 minimization of the error in handling the
signal passed by the gyro.

D. Restrained Accelerometer Reference System
The computational process for the restrained accelerometer system in a manner

similar to free accelerometer systems also creates an uncertainty in accelerometer
input axis orientation due to the finite coordinate transformation rate in the presence

Iv-38




of a vibratory environment. The environment of concern for restrained accelerometers
is angular rather than linear. The restrained accelerometers also have an additional
error, termed ''size effect." It occurs because the accelerometers are really velocity
meters integrating specific force in the rotating coordinate frame. Thus, any
centrifugal and tangential accelerations caused by rotations of the sensor package

about a point not coincident with the center of the sensor will result in an equivalent
bias error unless the accelerometer data is resolved into the computational frame

at a rate significantly faster than the angular oscillations.

1. Uncertainty in Accelerometer Input Axis Orientation

The means square angular motion of the accelerometer's input axis in the pres-
ence of the random ergodic angular environment, ¢, is defined by

o” - 12 f %@ df
2T f f

Because the coordinate transformation is performed at a finite rate, the motion
of the input axis will not be precisely followed. With the coordinate transformation
transfer function symbolized by G, the mean square angular error is thus defined by

— &
2 1 2 9(f)

€ = [1-G()] df
(S 271_2 ‘/f.a f2

For an angular vibratory input of significant amplitude extending over a
frequency band beyond the computational frequency, the above equation can be
approximated by

— 1 b
Zo5 [0 4
o 27 f 2
c f

In a manner similar to the free accelerometer, the mean angular error and its
effect on system accuracy can be evaluated and gyro bandwidth and computational re-
quirements selected so as to achieve an acceptable level of error in the overall
system error budget.
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2. Size Effect

The "size effect' error arises because the accelerometers cannot be mounted
in the vehicle such that their center of mass coincides with the vehicle's center of
mass or bending nodal points. The accelerometer in a strapdown system will, there-
fore, sense and integrate in the rotating frame the centripetal and tangential accelera-
tions due to vehicle rotations. These unwanted measurements are cyclic and would
be exactly removed at the end of each period of oscillation if the accelerometers’
outputs were continuously resolved and summed in the computational frame. Be-
cause the accelerometer outputs (the increments of velocity) are summed for a
finite time in the body frame before the data are transferred to the computational
frame, the effects of centripetal and tangential accelerations are not exactly cancelled
when summed in the computational frame.

Digital simulations have been conducted to determine the error for the strapdown
system in transferring the accelerometer data from the body frame to the inertial
computational frame in the presence of angular rotations about a point that is not
coincident with the sensors. A sinusoidal oscillation about an axis parallel to one
body axis and perpendicular to the input axis of two accelerometers was chosen as the
vehicle motion in order to determine the effect of (1) the amplitude and frequency
of motion, (2) the effect of the data transfer frequency to the inertial frame, and
(3) the effect of accelerometer data processing schemes.

If the accelerometer data is resolved into the computational frame at a fre-
quency that is less than the angular motion, the "size effect' error is equal to the
centrifugal acceleration produced by the angular motions. This can be seen by
examining the sensor outputs in the vehicle frame where the X axis in the following
equations is parallel to this moment arm between the sensor package and the axis
of rotation:

in 2wt t.
b [54 _ pg 2,2 ety [ 4
AV £t T m %t (2 4w %
t
tj+1 N j*l
= t
Avy ¢ RO cos wet [

It is observed from the above equations that a term in the AV‘)O{ equation is unbounded;
as the time difference between t; and t; + 1 increases the remaining terms are os-
cillatory, In the limit, if the accelerometer outputs are never resolved into the
inertial frame, the average acceleration error is then centrifugal acceleration that
can be expressed as

[ J
V =
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For extremely fast data processing, the other limit, the sign of the accelerometer
output in the computational frame alternates and the centrifugal and tangential accelera-
tion integrate to zero each cycle.

In Figure IV-19, the data processing error for two schemes is presented for
the transfer of accelerometer data to the inertial frame. The abcissa displays

the size effect error (\7) grouped with other terms that permit the data for a variety
of motions to be readily correlated; the ordinate is the ratio of the sinusoidal fre-
quency to the data transfer frequency. The two data processing schemes employed

to resolve the accelerometer data are derived in Appendix B and are simply:
1)resolving the velocity increment into the inertial frame each data sampling cycle,
and 2) using two successive samples of the velocity increments to estimate specific
force as a function of time through a polynomial fitting process, coupling this estimate
of specific force with time with a knowledge of attitude as a function of time to resolve
the data into the computational frame where it is reintegrated to obtain velocity in the
inertial frame.

This figure shows three distinct regions of error as a function of frequency
rates for both data processing schemes. In the first region, the error is extremely
small and is constant, independent of the motion and the data processing scheme. In
this region the errors are due to round-off caused by the computer word length. In
the second region, which can be termed the truncation region, the errors due to the
two schemes diverge, with the higher order data processing scheme having the lower
error. In this region for f/fc < .5, empirical expressions describing the error
have been developed for each of the data processing schemes:

Second Order Algorithm
V(ft/secz) = 2, 4R(ft)(6 (%)2 ({f— )2
c
Fourth Order Algorithm
V(ft/secz) = 1zR(ft)(é(:%2)2(fi)4
c

In the final region, f/f > .5, the computations are carried out at less than
twice the frequency of the mgtion and the error becomes independent of the fiata
processing scheme employed. In this region the error is equal to the centrifugal

acceleration:
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V(t/sec?) = 2n 2R(ft)(en(rad))2f2(cps)

These empirical equations can readily be extended to a random environment,
for example, the second order schemes, with the ass umption

Af
fi+E—'
2 lim d
61 _A*Af»o ¢ M
Af
-7

where ¢ (f) is the power spectral density of the angular environment, can be
written as

f
(o]
v=22 [rR@atia , f /f <.5
f2 o' ¢
C o
o0
1
=§/fR(1)Adf . f/f 5.5
o)

The radius must be considered a function of frequency because the bending nodal
points of the vehicle structure are frequency dependent. If the vehicle were rigid
(i.e., no structural flexure) the radius would be a constant and could be removed
from under the integral sign. In this form these expressions may be simplified by
integrating by parts once:

f
o
.8R 3
V—;—z— O d , f/f <.5
¢c Yo
[e0]
1
_ER/¢(t)fdf . fo/fc>.5
f
o
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E. Position Computation

The position computations consist of numerically integrating the incremental
velocity outputs of the accelerometers (already resolved into the inertial frame)
along with a gravitational acceleration model; a first integration yields velocity,
the second yields position. The position computational error since it is an integra-
tion process is composed of round-off and truncation errors. These computa-
tional errors have been investigated for the fourth order Runge-Kutta integration
scheme for different phases of flight: boost and injection, and orbital navigation,

In each of these flight phases, the computational error induced by the degree of com-
pleteness of the gravitational acceleration model (presented in Appendix B) affects
only the round-off error due to the increased number of numerical operations. This
variation in round-off error with varying gravitational models, however, is extremely
small compared to the round-off error associated with the normal integration opera-
tions.

The position computational errors were evaluated with the aid of a digital
simulation of the sensors and the integration process. The boost error was computed
by constructing a polynomial representation of acceleration during the boost phase that
could be integrated in closed form to yield a reference trajectory. This polynomial
was then integrated and quantized to synthesize the velocity vector output and entered
into the position computations. This information was then processed in the manner
described for computing velocity and position as presented in Appendix B. The com-
puted velocity and positions were then compared with the reference value at boost
termination. For the orbital phases of flight, a spherical gravitational potential was
employed in order tc obtain a reference trajectory through a closed-form solution of the
equations of motion. The total orbital navigation error was then determined as
a function of time in a circular orbit with a 100 nautical mile altitude. The digital
simulations yielded the effects of computer word length, integration time interval
and total flight time on navigation accuracy.

1. Boost and Injection

The error at injection was determined using 4th order Runge-Kutta integration
of the linear equations of motion. Figures IV-20 through IV-22 present (for an
injection into a 100 nautical mile orbit) the downrange, altitude and velocity errors,
respectively, as a function of the integration time interval and computer word length.
For the 20- and 24-bit computer word length data in Figure IV-20, the portions of
the curves of negative slope relative to increasing integration time intervals repre-
sent computer round-off error associated with computer word length. The remain-
ing portions of each of the error curves for the 20- and 24-bit computers as well
as the entire curve for the 28~, 32-, and 35-bit computers are the integration scheme
truncation error. These plots demonstrate that precise accuracy can be readily ob-
tained by reducing the integration interval with a corresponding increase in computer
word length.
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In Figure IV-21, the altitude error introduced by the computational process .
is presented. The positive-valued errors are due to computer round-off, the negative
values to a combination of round-off and truncation. It is observed that for a given
integration interval, the altitude error decreases with increased computer word length
from a round-off error region, passes through zero, and increases negatively into
the truncation region as the word length is increased.

In Figure IV-22, the velocity error is shown to continuously decrease with
an increasing integration time interval, characteristic of computer round-off in-
dicating that the truncation error associated with the integration of the gravitational-
induced acceleration did not enter into the errors of the preceding two figures; the
error in these figures was entirely due to round-off plus the truncation error induced
by computing position from velocity data, not velocity from acceleration data.

2. Orbital Navigation

The navigation error in orbit due to the computational process was determined
for a satellite traveling in a circular orbit about a spherical earth at 100 nautical
miles altitude. In addition to investigating the effect of computer integration time
interval and word length, the effect and relative importance of the addition and multi-
plication operations conducted within the computational process were investigated.

The latter investigation was conducted because the multiplication operations are
used only to determine incremental changes in position and velocity, the magnitudes
of which are small compared to total position and velocity; hence, computational
accuracy can be maintained with a smaller computer word length for determining
the incremental changes than can be used for summing the changes to the total posi-
tion and velocity. A computer with a multiplication word length of 22 bits was thus
selected for the study since it is capable of representing velocity to better than 0. 01
fps and incremental position changes to better than 1 foot assuming a maximum in-
tegration interval of one minute. Using a double precision addition operation resulted
in a 44-bit representation of total position and velocity.

Figures IV-23 through IV-25 present the position error as a function of the
number of orbits traveled and as a function of computer word length and integration
time interval. It is seen that when small integration time intervals must be used,
a benefit is derived from the double precision add operation on a basically short
word length computer.

In each of these figures, the position error is approximately proportional
to the number of orbits for the 22/44 and 44/44 computers and approximately
proportional to the square of the number of orbits for the 30/30 computer. In the
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The truncation errors for these integration schemes were evaluated on a digital
computer in which the rate input to a triad of gyros, the integrating gyros themselves,
the computer and the numerical computational process were simulated (Figure IV-1).
Three particular angular motions from which all vehicle motions can be constructed
by judicious summation were investigated: constant and sinusoidal angular rotations
about an axis noncollinear with any of the sensor input axes and a special case of multiple
axis motion, the classical coning motion. Each of these motions is amenable to a
closed form solution (presented in Appendix C), which was used as the reference against
which the results of the numerical integration processes were compared and the com-
putational error determined.

Coning motion is characterized by a constant component of angular velocity along
an axis in the body frame and sinusoidal out-of-phase components of rate at the same
frequency along two axes of the body that are orthogonal to each other and to the afore-
mentioned constant rate component. The motion is termed coning because the body
axis containing the constant component of angular rate describes a cone in space,
returning each cycle to its initial starting point. This motion, if it occurs or is created
by the vehicle or sensor supporting structure is of significant concern in any inertial
system either gimballed or strapdown. For a strapdown system, if the attitude compu-
tations cannot follow the sinusoidal rate components and properly reconstruct vehicle
attitude, the constant rate component along the third body axis (in the limit) becomes
the drift rate of the attitude computational error.

As part of these studies three different sets of attitude parameters were evaluated:
Euler angles, direction cosines and quaternions. The kinematic angular equations of
motion for each of these parametric sets are presented in Appendix B. Cayley-Klein
parameters and a four-angle Euler system can also be considered and they have prop-
erties similar to quaternions. Studies and digital simulations have been used to
investigate the relative merits of each of these sets of attitude parameters. These
studies show that there is little difference between quaternions and direction cosines.
There is also little difference between both of these attitude parametric sets and the
Euler angle set if the latter does not approach the singularity point equivalent to gimbal
lock or if four Euler angles and suitable "control' logic for the additional Euler angle
are employed. Direction cosines are most widely employed today in strapdown attitude
computations because they are well behaved and are required to resolve data between
coordinate frames. For this reason the majority of the analyses reported herein were
performed using direction cosines as the attitude parameters.

A summary of the results obtained from these digital simulations is presented
in Table IV-I in terms of the analytic models that have been derived for the truncation,
quantization and round-off errors with time as the integration parameter. The truncation
errors are presented for three vehicle motions: constant rates of rotation, sinusoidal
oscillations and coning rotations. In order to aid in the visualization of these results,
the equations in Table IV-I are plotted in Figures IV-6 through IV-10. The computa-
tional error shown in these figures is the derivative of the norm of the attitude error



TABLE IV-1L

ATTITUDE COMPUTATIONAL ERROR SUMMARY

i

Error Source Integration
and Angular Scheme
Motion
Truncation Rectangular

(Constant Rates)

2nd Order Runge-Kutta
4th Order Runge-Kutta

Error Equations In Terms
Of Drift Rate in deg/hr

_—

0.133 ©3/1o>
(1.62 x 1070) ®/g_ 4

T
Truncation Rectangular 117 8 2 fc (sin 2 f/f )2
(Sinusoidal 2nd Order Runge-Kutta 0.0985 3+ e (sin rr/cz f/fc)4
Rates) 4th Order Runge-Kutta 0.0535 134 fe (sin /2 f/fc)G
Truncation Rectangular 5
(Coning 2nd Order Runge -Kutta 260 B°(
f/fc > 0.8) 4th Order Runge-Kutta
2 .2

Truncation Rectangular 32787 £/t
(Coning 2nd Order Runge-Kutta 108 8 2 1‘3/t‘02
t/fc < 0.8) 4th Order Runge-Kutta 616 32 f5/£c4
Quantization Rectangular

¢ 9
(Coning 2nd Order Runge -Kutta k ,Q“) Br°/t

4th Order Runge-Kutta ¢

Round-off Rectangular

(All Motions)

2nd Order Runge -Kutta
4th Order Runge -Kutta

. PR TR i
(2.1 x10") 2 fc

SYMBOLS

Angular velocity in deg/scc
Computational {requency in cps

Angular amplitude in deg

Frequency of inpult motion in cps

Quantization level in arc scconds

least significant bit of the total direction cosine
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1

matrix, C, in degrees per hour, times the integration step size in seconds. This product
is also the computational error per integration step expressed in units of arc-seconds.
The abcissa is expressed as a function of the ratio of angular motion frequency to the
computational frequency. Note that these figures are log-log plots of the error.

In Figures IV-6 and IV-7 the characteristics of the truncation and bandwidth
limited regions are shown for constant and angular rates and coning. When the compu-
tational frequency is higher than the angular motion frequency, there are significant
differences in the truncation error as the order of the integration process is decreased.
As the integration frequency decreases and approaches the angular motion frequency,
the errors for various integration schemes approach each other. The error subsequently
becomes independent of the integration scheme and enters the bandwidth limited region
when the computational frequency is less than the angular motion frequency. In the
bandwidth limited region, the error curve presented in these two figures and the error
model in Table IV-1 represent the maximum error envelope in this region; the
magnitude of the error determined from the digital simulations exhibited a high degree
of randomness as a function of frequency ratio in this region, often equal to but never
exceeding the presented curve. For coning motion, the bandwidth limited error curve
is exactly equal to the constant rate component of the coning motion. In these two
figures, the slope of the bandwidth limited error curve is one because the vertical
axis indicates the magnitude of the computational drift rate times the magnitude of the
integration step size; plotting computational drift rate versus the frequency ratio
would reduce the slope of both the truncation and bandwidth limited error curves by
one, i.e., a slope of five would become a slope of four and the error curves would have
the characteristics presented schematically in Figure IV-4,

These two figures demonstrate the significant improvement in computational
accuracy that is obtained in the truncation region using higher order integration
schemes. For a fixed angular motion to integration frequency ratio, the accuracy of
the higher order integration schemes can be orders of magnitude better than the
rectangular integration scheme. Conversely, for a desired level of accuracy, there
are significant decreases in computation frequency requirements when higher order
integration schemes are employed, again orders of magnitude better. Even though
the number of program instructions to be executed per integration step increases
with the order of the integration scheme, the total number of instructions that must
be executed per second for a given level of accuracy decreases with increasing order
of the integration scheme. The number of instructions executed per second, hence
the computer's speed requiremerts, decreases with increasing integration scheme
order because the number of integration steps per second required to achieve a given
level of accuracy decreases faster than the number of instructions per integration
step increases.

In Figure IV-8 the truncation error for different amplitudes and frequencies of

sinusoidal input motion are shown for both rectangular and fourth order integration
schemes. This figure again demonstrates the significant reduction in truncation error
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achieved by increasing the order of the integration scheme. The basic difference

in the functional behavior of the computational error for sinusoidal motion from that
of other motions, is that there is not equivalent bandwidth limited region. As the
integration frequency decreases so as to approach the angular motion frequency, the
truncation error increases until the integration frequency is less than the angular
motion frequency, whereupon the truncation error decreases. This behavior of the
truncation error with frequency ratio is observed in Figure IV-8 by noting that the
correlation of the error is made upon the sine of the frequency ratio which is periodic.
It can be seen that the maximum value for the first derivative of the norm is finite;

it occurs at odd multiples of the input motion to the computational frequency ratio; it is
less than the maximum value at all other values of the frequency ratio, and is zero

at even multiples of the frequency ratio.

The actual truncation errors obtained for sinusoidal environments differ slightly
from the error models presented in Table IV-1 and the plots in Figure IV-8. The
error models presented are simplifications of more complex models but they are conser-
vative and are of sufficient accuracy for computational design purposes for all missions
and flight environments of interest. First, for values of sin (er- f/fc) between 0. 2 and

1, the truncation error for sinusoidal motions differs by the deviation factor shown in
Figure IV-11 for the fourth order scheme. It multiplies the entire error model
presented in Table IV-I. A similar factor is obtained for the other integration schemes.
Inasmuch as the deviation factor is appreciable only in regions where the computational
drift rates are unacceptably high and because the factor represents an attenuation of

the computational error, it is sufficient for design purposes to neglect this factor. The
second difference is that for the rectangular integration of sinusoidal motions, the
higher derivatives of the norm are nonzero. They need only be considered however

for: (1) long duration computational intervals during which the attitude matrix is not
updated by external means, (2) large angular amplitudes, and (3) for large values of

the frequency ratio (f/fc). For frequency ratios (f/f,) between zero and unity, the data
from the digital simulations has been correlated into an error model for the rectangular
integration of sinusoidal motions:

f 2

-2

.6x1

3.6x10 afct;azwzﬂz(?)
C

C=468ae

For values of f/fc less than one, this equation reduces to the error model given in
Table IV-I when sin (7 /2 x f/fc) is approximated by (7 /2 x f/f;). For frequency
ratios greater than unity, the data has not been manipulated to yield an error model;
the periodicity of the truncation error with frequency ratio described by the error
model in Table IV-I is still present along with the exponential growth in the errors
with time at any particular frequency ratio.

The above-described exponential growth of the truncation errors with time for

sinusoidal environments has not however been observed for the higher order schemes, nor
has it been observed for any integration scheme for any other motions.
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The effect of computer word length on the computational accuracy is shown in
Figure IV-9 along with interrelationships of the round-off and truncation errors for
coning motion; the results are identical for all other motions. The word length (n)
referred to in this figure and also in Table IV-I is the value of the least significant
bit used to represent the total direction cosine value (2-1). The calculations of the
incremental changes in direction cosine must be performed with sufficient precision
or word length to make the information contained in this bit location (2 %)meaningful.
For very small values of the ratio of the angular input to the computational frequency,
the round-off error per integration step is a constant that (1) decreases in magnitude
linearly with increased word length and (2) is independent of the order of the integration
scheme, the type of angular motion and the integration step size.

It is shown in Figure IV-9 that for fixed word length and integration step size,
as the frequency ratio is increased the total error for lower order integration schemes
breaks away from the round-off error level prior to the higher order schemes and inter-
cepts the truncation error curve at higher levels of truncation error.

The critical items in determining the word length required for the calculation of
the incremental changes in direction cosines are (1) the magnitude of the incremental
angular rotation at the point of transition from round-off to truncation for the selected
value of round-off error and integration scheme and (2) the dynamic range of the sensor.
The magnitude of the incremental angular rotation at the transition point governs the
number of most significant bits of the total direction cosines required in the incremental
calculations; the magnitude of the dynamic range (the maximum to minimum values of
the sensor output during the integration interval including compensation for determini-
stic sensor errors) governs the number of bits required to represent the value of the
gyro output (A©) in the incremental calculations.

The number of bits required to represent the direction cosine in the incremental
cosine calculations is theoretically the difference between the number of bits selected
to represent the total direction cosines and the magnitude of the maximum angular
increment at the point of transition from round-off to truncation. An example of this
would be the selection of a least significant bit of the total direction cosine of 227 and
the selection é)f an integration scheme whose truncation error left the round-off error
at a A© of 2 ” radians. The predicted word length of the direction cosines for the
incremental calculations would be 18 bits. Figure IV-12 demonstrates the results of
the digital simulation study used to confirm this analysis. These curves are for 2-27
accuracy in the total direction cosine and varying A© at the error transition point
(covering various integration schemes and integration intervals of interest). It is
shown in this figure that required direction cosine word length in the incremental
calculations is less than the number of bits representing the total direction cosine.
These curves become asymptomatic to a line having a slope of minus 2 and indeed this
asymtote intersects the round-off level (1.5 x 103 arc-second) at the predicted values.
In practice, an additional bit is required to minimize the error.
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Figure IV-10 now adds the effect of sensor quantization to that of round-off and
truncation; second and fourth order integration of a coning environment without quantiza-
tion and with different levels of quantization are presented. The quantization error is
seen to modify the transition region between round-off and truncations. The quantization
error is obtained by taking the difference between identical runs with and without quanti-
zation. The results of this evaluation procedure are presented in Figure IV-13, which
shows the quantization error per integration step, C, to be independent of the integration
scheme and proportional to the amplitude and the frequency of the motion, the size of the
integration interval (—fl— ) and the quantization level itself. This error may be expressed
as: ¢

a

Q
o

2

¢ -k T (he)g070)

The scatter in the data is due to the fact that this error is a small part of the total error,
This scatter makes an accurate evaluation of (k) and (a) difficult; a mean value estimate of
the exponent (a) is 2. In order to achieve the accuracy benefits of the higher order integra-
tion schemes in the truncation region, smaller levels of sensor quantization are required
compared to the levels required for lower order schemes. Quantization, however, is

not an important error source because pulse torquing schemes capable of quantizing

data to an arc sec or less have been developed.

For some applications it may be desirable to use an incremental data processor
(DDA) rather than a whole number general purpose computer. In these applica-
tions, the angular rotation of the vehicle is logically used as the independent integra-
tion parameter rather than time. Each sensor pulse or a fixed number of pulses is
allowed to accumulate until a specified level is reached, at which time an integration
step is performed. Since the multiplications in the angular motion difference equations
are between direction cosines and the incremental angular change, only additions or
subtractions need be performed because the angular change is always constant.

Figure IV-14 compares the errors of a DDA approach with that of a whole number
computer for both rectangular and second order integration processes. All systems in
this figure are sized to handle a maximum rate of 25 degrees per second. At the point
of maximum angular rate, the error of the incremental and whole number computational
processes are equal. At angular rates below the maximum, the error associated with
the whole number computer decreases at a faster rate than that of the incremental com-
puter. This can also be seen in Table IV-I when the integration parameter for rectangular
integration of constant rates is changed from (At) to (wAt). Figure IV-14 demonstrates
the accuracy improvements to be gained for both the incremental and whole number
computational processes with higher order integration schemes. There are no funda-
mental limitations to prevent the use of higher order integration schemes in a DDA,
only hardware limitations when it comes to implementation. The accuracy penalty
encountered with a DDA is a computational error that at times other than the maximum
rate input will yield larger errors than would occur using time as the independent
integration parameter.
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II. INTRODUCTION

The function of an inertial navigator is to indicate the attitude, the velocity
and the position of a vehicle with respect to a selected computational frame using
information obtained from on-board inertial instruments. A strapdown navigator
is characterized by gyros and accelerometers that are directly attached to the
vehicle., The sensor's measurements of linear and angular motion of the vehicle
relative to inertial space are expressed in vehicle coordinates. It is necessary in
a strapdown navigator that the gyro outputs be used to numerically compute the
attitude of the vehicle relative to inertial space and that the computed attitude be
used to resolve the accelerometer outputs into the inertial frame where they are
doubly integrated along with a gravitational model to yield vehicle position, These
strapdown computational functions are schematically shown in Figure II-1, In this

same figure, the functional operation of a gimbal navigator is also presented for
comparison,

The kinematic equations that must be solved by any inertial guidance system

are
d’? [T (t)] [ (t)] [Q (t)] (Attitude Computations)  (II-1)
"'( = [T (t) F (t) (Coordinate Transformation)  (II-2)
I . (I1-3)
V(t) f { F(t) - g (R)} dt (Velocity and
)
¢ Position
f{ _R f {f(t) dt Computations) (II-4)
o

For simplicity these kinematic equat1ons have been expressed in an inertial computa-
tion frame. A 3 x 3 matrix, [T ] is used to define the orientation of the sensor read-
out coordinate system relative to the computational inertial frame. The elements of
the skew-symmetric matrix, [SZ] ,are the components of the angular rate of the vehicle
sensor readout frame relative to the inertial frame expressed in the sensor readout
frame, F, g, V and R denote, respectively specific force, gravitational acceleration,
velocity and position, Section VI presents a list of symbols used in this report,
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For a strapdown navigator, the orientation of the sensor frame relative to
the computational frame is nondeterministic and time variant and must therefore be
explicitly computed in flight starting with an initial knowledge of attitude. In contrast
to a strapdown mechanization, there is a gimballed or platform inertial navigator
whose functional mechanization is described in Figure II-1, In the gimballed
mechanization, the gyros and accelerometers are mounted on a member, commonly
termed a sensor cluster, that is suspended from the vehicle by a gimbal structure,
The outputs of the gyros are used as error signals for a gimbal drive or control
system to null out all angular motions of the sensor cluster. This control system
is designed to isolate the sensor member from all vehicle angular motion thus
maintaining the initial attitude of the accelerometers relative to inertial space. This

maintains [Tg] in equation (II-1) at a predetermined value and results in the accelerom-
eter outputs being directly available in an inertial frame for the position computations,

The significant difference between strapdown and gimballed navigators is
the use of gyros in a strapdown system to measure absolute attitude or the absolute
change in attitude in contrast to a gimballed system in which the gyros are used as
nulling sensors, This results in the replacement of the electromechanical gimbal
support and drive system of the gimballed mechanization by a numerical computational
process implemented in the digital computer for the strapdown system,

After the accelerometer data of the strapdown navigator are resolved into the
computational frame, the position computations for it and a gimballed system are
identical, The linear equations of motion including a model of any force fields

acting upon the vehicle are numerically integrated, once to obtain velocity and
a second time to obtain position,

A. Commonality of Sensor Mechanizations

The design and analysis of the strapdown computational process is greatly
simplified by the fact that the computational process can be separated to a large
extent from specific sensor mechanizations, The effects of the sensors upon the

computational process can be analyzed in terms of the characteristics of the sensor
loop output signal.

Basically, there are two classes of strapdown sensor mechanizations. The
distinction is made entirely upon the angular orientation relationship maintained
between the sensor input axes and the vehicle. One class employs sensors whose
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input axes are maintained fixed relative to the vehicle by a rebalancing feedback
loop. Typical sensors of this class, which are termed restrained sensors are:

Angular Motion Sensors Rate or Rate Integrating Gyros
Single Axis Platforms

Restrained Pendulous Integrating
Gyro Accelerometers

"Paired Accelerometers"

Linear Motion Sensors Force or Torque Rebalanced
Pendulous Accelerometers

Restrained Pendulous Integrating
Gyro Accelerometers

Free Gyro Centering Force
Measurements

The output of a restrained gyro commonly used in strapdown systems is the
integral of the component of vehicle angular rate (relative to inertial space) that
is projected onto the sensor's input axis, Restrained gyros require the numerical
integration of the angular kinematic equation (equation II-1). The output of a restrained
accelerometer is the integral of the component of specific force relative to inertial
space projected onto the sensor's input axis.

The second class of sensor mechanization employs sensors whose input axes
are unrestrained or free of the vehicle. Sensors of this class, which are termed
"free sensors'', are:

Angular Motion Sensors Free Gyros
Linear Motion Sensors Free Pendulous Gyro
Accelerometers

The output of free gyros are trigonometric functions of the angular orientation
of the vehicle relative to inertial space and allow a solution to the angular kinematic
equations directly without the employment of a numerical integration process, The
output of a free pendulous gyro accelerometer is the integral of specific force
relative to inertial space but integrated in a rotating sensor frame, namely, the
suspended sphere or rotor. The integral is obtained in the vehicle frame and must
be resolved into the inertial frame,
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These sensor mechanizations are described in References 1 through 4 and
briefly discussed in Appendix A. Examples of the data processing equations that
can be used to compute attitude for both restrained and free gyros are presented
in Appendix B. Similarly, data processing equations required to transfer the
accelerometer outputs into the inertial frame for restrained and free accelerometers
are also presented in Appendix B. In considering the design of a strapdown navigator
for particular mission applications, it is not necessary to use free gyros with free
accelerometers nor restrained gyros with restrained accelerometers; any mixture
can be employed, depending upon sensor capability and mission requirements.

Within the restrained sensor mechanization class, only four parameters are

required to describe or characterize the sensor's data outputs to the computer,
These parameters are:

1. Frequency response of the sensor loop, which characterizes the
possible frequency content of the sensor output signal that the
computational process must follow.

2. Rate or frequency at which data is available to the computer
(the sensor output is usually a finite frequency digital output),

3. Resolution or smallest value of the sensor output.
4. Maximum magnitude of the sensor output between sampling times.

For the free sensor mechanization, the following parameters are needed to
characterize the signal output:

1. Specific trigonometric outputs of the sensors,

2. Rate or frequency with which the sensor can be meaningfully sampled,

3. Resolution associated with the readout design,
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B. Study Objectives and Report Organization

The objective of the study reported upon herein is to define and to develop
the techniques for evaluating the computational problems, the computational require-
ments and the computational accuracy associated with strapdown navigators. Included
as areas of concern are the following:

1. Different types of inertial sensor and computer mechanizations.
2. Inertial sensor readout characteristics.

3. Computational requirements to implement sensor utilization techniques
by which strapdown mission flexibility, accuracy and reliability can
be increased,

The subsequent sections of this report present an analysis of the strapdown
computational accuracy as effected by the numerical algorithms, the flight environ-
ment and critical computer hardware and inertial sensor characteristics. Section
IOI presents a functional evaluation of the computational requirements and the
sensor/computer/flight environment interrelationships. Section IV summarizes
the quantitative analyses of the computational errors that have been performed with
the aid of detailed digital simulation studies of the strapdown hardware and software,
All error sources are evaluated and analytical error models are presented, Section
V presents hardware application studies that have been performed in order to improve
the mission flexibility, accuracy and reliability of strapdown navigators. Section VI
presents the results of the study performed to define the computational requirements

in the initial phase of a space mission-launch through transplanetary trajectory injection.

Appendices A through G present the detailed analyses and mathematical derivations to
supplement the discussion in the main body of this report.
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III. FUNCTIONAL EVALUATION OF COMPUTATIONAL REQUIREMENTS

This section establishes, by functional analysis, the significant parameters
that must be considered in the design or performance analysis of a strapdown
navigator that uses either class of sensor mechanization; free or restrained. The
functional analysis is developed by an inspection of the equations that must be solved
and a consideration of the forcing functions that create an ideal sensor output, Table
NI-1 defines specific terms that will be frequently used in this and later sections.

The most critical computational problem for strapdown navigators occurs
during thrusting phases of flight, The problem is the joint process of maintaining
knowledge of the orientation of the accelerometer sensitive axes with respect to
inertial space and resolving the outputs of the accelerometers into the inertial
computational frame. The process of using the resolved accelerometer data in
conjunction with a mathematical gravitational acceleration model to determine
velocity and position is at least an order of magnitude less critical with regard
to the demands placed upon the computer, The requirements are less severe
because the computations are performed in a stabilized frame of reference wherein
all that must be followed are the low frequency variations of the position and velocity
vectors,

In the following sections the functional requirements for the three computational
functions (attitude computation, resolving the accelerometer data into the computa-
tional frame, and position evaluation) will be presented in reverse order as each can
impose requirements on the preceding computational functions,

A. Position Computations

The basic navigation equations that must be solved to compute inertial position
are equations II-3 and II-4, The selection of the coordinate system (linear, spherical
cylindrical, etc.) in which the linear equations of motion are to be integrated for
position tracking, dictates the parameters to be used. This selection is not critical
to the computational accuracy and is usually made on the basis of convenience.
Vehicle position and velocity can be expressed in a number of stationary or
rotating coordinate systems., A rotating frame may be useful in certain situations,
such as orbiting satellites, to minimize computer round-off error, However,
compensation for additional pseudo-specific force terms is necessary to account
for the rotation of the computational frame. The center of the coordinate system is
often chosen to be at the origin of the primary central force field of interest to
simplify the gravity calculation, Trajectory-oriented coordinate systems are some-
times used for powered flight to facilitate implementation of the guidance laws.
Selection of a coordinate system and the linear or angular position and velocity
parameters which describe the motion of the vehicle's center of mass can also be made
to minimize the number of executable computer instructions or program storage
requirements, The effect of all these selections on accuracy is of secondary
importance and poses no critical computational problems,
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Truncation error

Round-off error

Word length

Computational
frequency

Integration interval

Sensor sampling

frequency

Quantization

Sensor loop
bandwidth

Sensor loop
phase angle

TABLE OI-1
DEFINITION OF TERMS

the error introduced by the inability of a numerical
integration process to follow or precisely describe

the angular or linear motion of the vehicle as a function
of time,

the error introduced by the use of a finite computer word
length, hence finite precision, to process the sensor data
and to perform the numerical computations.

the number of "bits'" or characters used to represent
a number in the computations using a binary numbering
system,

the number of times per second that a "set of equations"
describing a complete function, such as attitude or
position, is solved.

the magnitude or size of the increment across which the
integral equations are solved each integration. If time

is the independent parameter of integration, the integration
interval is the reciprocal of the computational frequency
for the integration process.

the number of times per second that the sensor's outputs
are obtained by the computer,

the resolution or minimum value of the sensor's digital
output,

the frequency of a sinusoidal input at which the amplitude
of the sensor output is 71 per cent (minus 3db) of the

amplitude of the input.

the relative difference in phase between a sinusoidal
input to a sensor and the sinusoidal output of the sensor,
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Independent of the navigation or computational frame selection, either the
accelerometer output data or the gravitational acceleration model, or both, must
be resolved between coordinate frames, This requires knowledge of the values
of the elements of a three-by-three matrix relating the accelerometer!s axes to
the computational frame and the elements of another three-by-three matrix relating
the gravitational model to the computational frame, For any selected navigation
frame, one of these matrices may be assumed to be known as a function of time
(many times to reduce the computer program size it is a unit matrix) while the
other is obtained using the output of the gyros, or both may be computed from a
priori information and gyro outputs. In any case, the problem is identical: the
gyro outputs must be used to relate the vehicle orientation to inertial space either
explicitly or implicitly independent of whether or not the navigational computational
frame is inertial. To simplify the presentations in the following sections, an inertial
navigation frame will be assumed. The discussions of the computational functions,
problem areas, requirements and characteristics of the error sources are identical
for any selected computational frame.

B. Accelerometer Data Coordinate Transformation

The transformation of the accelerometer data into the inertial computational
frame can be thought of functionally as the formation of the acceleration vector in
inertial space. The accelerometers supply the magnitude and orientation of the
acceleration vector relative to a rotating frame while the attitude of this rotating
frame relative to inertial space is obtained from the gyro data after suitable
processing. From this statement, two fundamental requirements evolve so as to
permit the accurate measurement of acceleration in the inertial frame:

1. The time relationship of the accelerometer outputs and the inertial
attitude of the accelerometer input axes (as derived from the gyros)
to each other must be precisely known,

2, The output of the accelerometers should be resolved into the inertial
computational frame at a frequency greater than that associated with
the angular motion of the accelerometer input axes relative to inertial
space,

In the following subsections, the additional requirements peculiar to the
restrained and free accelerometer systems are presented.

1. Restrained Accelerometer System

The computational process for resolving restrained accelerometer outputs
into the inertial frame consists of solving the following vector equation:

o = [Ti (t)] I (I-1)
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or its equivalent

f 7! (t) dt =f{ [FIS (t)] B (t)}‘dt (IT1-2)

The motion of the restrained accelerometer's input axes is caused by the
angular rate applied to the vehicle and enters into the coordinate transformation
process through (Tg) in the above equations, This angular motion can be divided
into constant angular rates and accelerations, low frequency commanded rotations
and limit cycles, and angular sinusoidal and random vibrations, The computational
frequency or accelerometer transfer rate that must be employed is governed by the
magnitude and frequency content of the angular vibration input and the system accuracy
that is desired. Any angular vibration input of significant angular amplitude at
frequencies beyond that of the accelerometer data transfer rate results in an angular
uncertainty in the knowledge of the accelerometer's input axis and thus an improper
resolution of the main thrust acceleration into the inertial computational frame, The
following sketches describe this computational error.

INPUT RANDOM /\w
ANGULAR RATE

(deg/sec B frequency
cps

fa, fb - computational frequency

b fa > fb
UNCERTAINTY ;
IN LOCATION
OF INPUT AXIS fa—»;
¥ frequency
(deg/ sec)2

66-727
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The first sketch describes the vehicle's and the accelerometer input axes'
motion by an angular rate power spectral density., Assuming the existence of
perfect knowledge of attitude is continuously available and sampled periodically to
resolve the accelerometer data into the computational frame, a finite frequency
transformation process would be able to precisely follow the angular motions of the
accelerometer input axes below the transformation frequency. At angular frequencies

beyond that of the data transformation process, all knowledge of angular motion would

be lost; thus, the main thrust vector would be misresolved into the computational

frame by an angle equal to the angular motions of the input axes at the higher frequencies,
The faster the transformation process, the lower the input axis uncertainty, This is
demonstrated in the second sketch wherein f, denotes a transformation process carried
out at a frequency faster than the transformation process implemented at frequency §,.

Another error that arises for restrained accelerometer mechanizations occurs
because they are actually "'velocity meters" which yield the integral of specific
force in the rotating vehicle frame, What is desired is specific force itself
(equation [M-1) or its integral (equation III-2) in an inertial frame., It is required
that the accelerometer outputs be differentiated in the rotating frame to obtain specific
force and that the computed specific force be resolved into the inertial frame and then
reintegrated. Methods of differentiating and reintegrating the accelerometer outputs
to obtain different degrees of accuracy based upon polynomial fitting are presented
in Appendix B.

A common example of the error associated with this problem is termed size
effect, Integrating accelerometers when subjected to an angular rotation about any
point that is not coincident with the center of the sensing element, will measure and
integrate the tangential and centrifugal acceleration induced by the magnitude of the
angular rotation and the moment arm between the axis of rotation and the sensor
package. As they are instruments integrating in a rotating frame, the sum of their
output in the vehicle frame indicates a net linear velocity at the end of each cycle
of the angular motion due to the unchanging sign of the centrifugal acceleration. The
error can be minimized and made practically negligible by resolving the accelerometer
outputs into and then integrating them in the inertial computational frame at a frequency
higher than that of the angular motion. Increased accuracy is also achieved by using
higher order techniques (presented in Appendix B) to differentiate and reintegrate the
accelerometer outputs as described above.

2. Free Accelerometer Systems
Free accelerometers are simply free gyros with an unbalanced pendulous

mass along the spin axis, Subjecting such a sensor to a linear acceleration causes
the spin axis to precess relative to inertial space, The equations describing the
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INPUT RANDOM

SPIN & INPUT
AXIS MOTION

angular motion of the spin axis are presented in Table II-II. The precession rate

is proportional to the magnitude of specific force; the angle through which the spin
axis precesses is proportional to the integral of specific force. The computational
process for measuring specific force in the inertial frame consists of determining
the orientation of the spin axes of two free accelerometers relative to the vehicle
and resolving these measurements into the inertial computational frame using the
vehicle attitude computed from gyro data, The time differential of the orientation
of the spin axes relative to inertial space can be used in conjunction with the kine-
matic equations presented in Table III-II to obtain specific force as a function of
time. The integration of specific force in the inertial frame can then be performed
to obtain velocity. The coefficient matrix appearing in front of the time derivative
of the spin axes orientation vector simply describes the orientation of the input axes
relative to inertial space as a function of time and thus performs the same functional
task as does the attitude matrix in equations IlI-1 and MI-2 for restrained accelerometers,

The applied acceleration during thrusting phases of flight that causes precession
of the spin axes can be divided into a constant thrust component and linear random and
sinusoidal vibrations. The computational frequency or accelerometer transfer rate
is governed by the magnitude and frequency content of the linear vibrations; the
constant thrust component of acceleration causes a very smooth and easily followed
precession rate, Any significant linear vibration at frequencies beyond that of the
accelerometer data transfer rate results in an angular uncertainty in the knowledge
of the accelerometers' input axis and an improper resolution of the main thrust
acceleration into the inertial computational frame. The following sketches describe
this computational error.
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ACCELERATION //\—\
2
(g /cps)
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The first sketch describes an input random linear acceleration, defined in
terms of a power spectral density, that will cause the free accelerometer's spin
axis to precess through the random angular motions whose amplitude is described
by a power spectral density as a function of frequency in the second sketch. In
exactly an identical manner as described for the restrained accelerometers,
angular motions at frequencies beyond the frequency with which the accelerometer
data is transformed into the computational frame will cause a computational error,
The computational error is the misresolving of the main thrust vector into the
computational frame with an angular error equal to the amplitude of the motion at
frequencies faster than the accelerometer data transfer frequency, The third sketch
describes this angular error for two different data transfer motion frequencies, fy
and f},, where f, is greater than f,. There is also a computational error in following
the precession of the spin axis caused by linear vibratory accelerations whose
frequencies are below that of the computational frequency. The error is a function
of the accuracy with which the orientation of the spin axes are differentiated and then
reintegrated in the kinematic equations of Table IOI-II. Just as in the case of
restrained accelerometers, high order, hence more accurate schemes for differen-
tiating and reintegrating these equations can be devised.

The final computational error associated with the free accelerometer system
is due to the measurement uncertainty ( quantization or resolution) of its body mounted
readout system. This resolution error contributes to both an uncertainty in the
orientation of the spin axis and also to an uncertainty in the determination of specific
force by the time differential of the spin axis orientation relative to inertial space.

C. Attitude Computations

The consideration of the accelerometer coordinate transformation requirements
has already placed certain requirements upon the attitude computations during thrust-
ing phases of flight, First, vehicle attitude must be computed and used to resolve
the accelerometer data into the computational frame at a frequency that is compatible
with the angular motion of the accelerometer input axis and the desired system
accuracy. Secondly, the quantization or resolution level of the attitude sensors
must be small and preserved by the attitude computations in order to minimize the
uncertainty in knowledge of the orientation of the accelerometer input axes relative
to inertial space., In the following subsections, the additional requirements peculiar
to the free and restrajned gyros are discussed,

1. Free Gyro System
The free gyro serves as an inertial reference by providing a physical

reference (an angular momentum vector) stabilized with respect to inertial space.
Attitude of the vehicle relative to the angular momentum vector is computed by
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inscribing a pattern on the sphere, e.g., a great circle, such that the timing of a
series of lines crossing under an optical pickoff fixed to the vehicle defines the
angle between the spin axis and the pickoff axis, By using a minimum of two pick-
offs the attitude of the spin axis relative to the vehicle can be computed. Two
free gyros whose spin axes are nonparallel are sufficient to define an inertial
reference. A typical computational process is presented in Table II-III. This
process requires the solution of transcendental equations, square roots, the
product of matrices and a matrix inversion, The computational error associated
with this process is the error in approximating the transcendental functions, the
accuracy of the square root scheme, and the round-off error in executing these
processes. None of these items are a severe limitation to the accuracy of the
required transformation matrix because the computational error is not cumulative
over the duration of the flight; the computational error in forming the transformation
matrix each computational cycle produces an error equivalent to an uncertainty of
the orientation of the accelerometer input axes,

2. Restrained Gyro System

The computational process for determining attitude by using restrained gyros
requires the numerical integration of the angular rate equations (equation I1-1),
which use the outputs of gyros which are the integral of the components of angular
rate. The computational error associated with any numerical integration process
is naturally cumulative. The numerical integration process must be properly
designed so as to limit the magnitude of the error to an acceptable level over the
duration of the flight. The degree or order of the numerical integration process,
the size of the integration step and the computer word length used to implement the
procedure must be selected such that the attitude of the vehicle can be computed to
the desired degree of accuracy at any point within the mission. Higher order integra-
tion schemes, small integration step sizes and longer word lengths are known to
yield greater accuracy.

The angular motion that must be followed by the attitude computations is that
"passed" by gyros that are characterized by a finite bandwidth, Any significant
motion of the vehicle that is not followed or "passed' to the computer by the gyros
is classified as a sensor error. Figure III-1 depicts this distinction between the
angular motion input to the computer and the sensor error due to finite bandwidth.,

The largest integration step size permitted is set by the tolerable computational error
encountered in either the integration of the angular rate equations or in the computa-
tional frequency requirements of the accelerometer data coordinate transformation
process previously discussed in Section III B.

One area of extreme importance in the design of the numerical attitude
computational process that must be considered when using restrained gyros is the

III-9
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initial apparent incompatibility between the gyro outputs, the integral of angular
rate, and the knowledge of angular rate that is required by the numerical integration
process (equation I-1). In order to form a proper interface between the sensors
and the integration process, it is necessary (in a restrained gyro system) to extract
estimates of angular rate from the integral of angular rate, This extraction of the
component of the vehicle rate vector sensed by each gyro must be performed with
an accuracy compatible with the accuracy of the intended numerical integration
scheme; otherwise, the accuracy of the solution of the angular equations of motion
will be limited to the accuracy of the scheme by which rate is extracted from its
integral; the lower truncation errors of a higher order integration scheme will not
be obtained,

A method for extracting accurate estimates of angular rate consists of: (1)
using a number of successive gyro samples within an integration interval to evaluate
the coefficients of a polynomial expanded in time that describes the integral of rate
components from each gyro, and (2) differentiating the polynomial to obtain angular
rate as a function of time over the integration interval, Examples of different rate
extraction schemes are presented in Appendix B.

In order to realize the accuracy benefits of high order integration schemes
with their lower truncation errors, it is necessary that the error introduced in
the integration process by the quantization of the gyro outputs be smaller than the
truncation error. The error introduced by quantization is an uncertainty in knowledge
of the magnitude of the angular rotation (by the computer) at any instant of time, The
largest possible error is equal to the least significant bit of the sampled gyro digital
output, This uncertainty is not cumulative with time as the portion of the motion
that is less than the quantization level is stored mechanically by the gyro on its output
axis, and it becomes the initial conditions for the gyro's integration of rate over the
next sampling period. Therefore, the effect of sensor loop quantization is to '"phase"
or time shift a small portion of the total angular motion, This error is independent
of the order of the integration scheme and therefore does not preclude the use of
integration schemes higher than rectangular or second order as is often cited in
the literature (References 5 through 10). In the implementation of a restrained gyro
mechanization the quantization level may be so large as to dominate the truncation
error of even a rectangular integration scheme such that the use of higher order
schemes are not warranted,

D. Summary of Parameters Affecting Computational Accuracy

The functional analysis presented in the previous section introduced the
many parameters that are involved in the design and analysis of the strapdown
computational process. The origin of these parameters are the flight environment,
the inertial sensors, the computer in which the computational process is implemented
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and finally the computational process itself, Table II-IV summarizes these
parameters. In order to be able to design or analyze strapdown computational
processes and to develop direct and economical techniques for controlling the
magnitude of computational error, it is necessary that precise analytic models
of the computational errors as a function of all these parameters be available,
The analytical models of the computational errors have been derived and are
presented and discussed in Section IV,

TABLE III-IV

PARAMETERS AFFECTING STRAPDOWN COMPUTATIONAL ACCURACY

e Vehicle Angular & Linear Motion

Amplitude
Frequency
Phase

e Sensor Loop Characteristics

Bandwidth
Data Rate
Quantization

e Computer Hardware

Word Length
Speed

e Computational Algorithms

Sensor Data Processing or Filtering*
Order of Numerical Integration Schemes
Order of Transendental Approximations
Frequency of Solution

* Extraction of angular rate or specific force from their respective integrals
provided by the inertial sensors
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Iv. COMPUTATIONAL ERROR ANALYSIS

For the design or analysis of strapdown computational processes and to develop
techniques for controlling the magnitude of the computational error, it is necessary
that analytic models of the computational errors be available. This section summarizes
the characteristics of the strapdown error sources and presents the analytic models
for each of these errors. These error models immediately imply techniques that can
be used to control the magnitude of the computational error. The analytic models were
established through the use of large scale digital simulations of inertial sensor loops,
airborne digital computers and computational algorithms in a scientific ground computer.
An example of the digital simulation program including the programmable variables
for analyzing the restrained gyro attitude computational errors is presented in Figure IV-1.
With these analytic error models now available, the error models rather than the detailed
simulation programs can be used to analyze computational processes or conversely to
arrive at a design for any given application. These error models can be formulated and
applied in an open loop error analysis technique similar to the technique used throughout
industry to evaluate the navigational errors caused by inertial sensors; a rapid method
for performing the computational error analysis would then be available for use in system
studies and design trade-offs as shown in Figure IV-2.

In the requirements discussion in the preceding section, free gyros were not
associated with free accelerometers nor restrained gyros with restrained accelerom-
eters. It is quite reasonable to entertain from the computational viewpoint, the
mixt.re of free and restrained sensors depending upon the mission. Further, it is not
necessary to force such a relationship in order to analyze the computational errors.
The only tie between the gyros and accelerometers is the speed and accuracy with which
the accelerometer data must be resolved from the vehicle frame into the inertial frame;
the type of gyro attitude reference is not important. Therefore, in the remainder of
this section the computational errors associated with gyros and accelerometers will
be summarized separately as will be the computational errors of free and restrained
sensors. All the parameters listed in Table HI-IV are analyzed and discussed. Further
discussions of the errors and their characteristics are presented in the appendices.

A. Restrained Gyro Attitude Reference System

The computational process for determining vehicle attitude from the output of
restrained gyros requires the numerical integration of a set of differential equations.
The error in this numerical integration process is unbounded, the magnitude of the
attitude error increases with time.

The first fundamental result of the digital simulation studies performed is that
the attitude error due to the computational process can be described by a single
parameter, which is termed the norm. The norm parameter is the root-sum-square
of either the error in each element of the transformation matrix between the true
inertial frame and the computational inertial frame or the error in each of the three

Iv-1
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Euler angles that describe the orientation of the computational inertial frame relative

to the true inertial frame (Appendix D). The error in orientation between the computa-
tional inertial frame and the true inertial frame is obtained by subtracting the strapdown
computer vehicle attitude relative to the computational inertial frame from the true
vehicle attitude relative to the true inertial frame.

For any input motion and computer characteristics, the error in an element of the
direction cosine matrix between the vehicle and inertial space can be described by a
ramp plus a sinusoidal oscillation whose amplitude increases as a linear function of
time. The frequency of the sinusoidal component of the error is the same as the input
motion frequency. This behavior of the error with time is shown in Figure IV-3. Also
shown in this figure is the behavior of the norm with time. After an initial transient,
the norm of the attitude error matrix is seen to be a linear function increasing with
time. A single parameter that describes the norm is therefore its rate of change with
time which can be expressed in units of degrees per hour. Analyses have shown that
its magnitude and behavior are independent of the orientation of the axis of rotation
relative to the gyro input axes and the orientation of the gyros relative to the computa-
tional coordinate system.

The second fundamental result of these studies is that there are four regions of
computational error that have been termed due to their origin: (1) round-off, (2) quanti-
zation, (3) truncation and (4) bandwidth limited. The functional characteristics of each
of these regions and their relationship to each other are shown in Figure IV-4. In
this figure, the computational error is plotted versus the ratio of angular motion frequency
to computer integration frequency on a log-log plot.

For the case when the frequency of integration is lower than the angular motion
that the computer is attempting to follow, the computer is operating in the bandwidth
limited region on the extreme righthand side of the curve in Figure IV-4. The error
in this region is independent of all computational and computer characteristics. As
the computer integration frequency is increased relative to the angular motion frequency,
the computational error enters the truncation region.

In the truncation region, the computational error is a function of both the order of
the integration scheme (coupled with a rate extraction scheme of suitable accuracy) and
the ratio of the angular motion frequency to the integration frequency. Increased inte-
gration frequency results in a lower computational error. Increasing the order of the
numerical integration scheme also reduces the computational truncation error by
increasing the slope of the truncation line, pivoting the line about its point of intersection
with the bandwidth limited region. The slope of the truncation line (n) in this figure is
equal to the order of the employed integration scheme; e.g., for a fourth order scheme,
the slope is 4; for rectangular integration scheme, the slope is unity. As the integration
frequency is further increased, the computational error enters the region dominated
by the quantization level (pulse weight) of the gyro loop.
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In this quantization region, the computational error is a function of the sensor
quantization level and the ratio of angular motion frequency to integration frequency.
The error is independent of the order of the integration scheme. The slope of the
quantization error line relative to the frequency ratio is unity; the magnitude of the
quantization error at any frequency ratio is proportional to the square of the sensor
quantization level.

As the integration frequency is increased relative to the frequency of the angular
motion, the computational error enters the fourth region round-off. In this region,
the computational error is inversely proportional to both the computational integration
frequency (a slope of minus one) and the computer word length (the addition of another
bit to the computer word length decreases the round-off error by a factor of two).

Figure IV-5 summarizes the four parameters by which the magnitude of the com-
putational error can be controlled: word length, sensor quantization, integration scheme
and integration interval. Because the error and the means by which the magnitude can
be controlled are independent of each other, all four portions of the error curve versus
vehicle angular motion for a particular application can be designed as required and the
total curve shaped during the design to obtain the desired computational performance.
There are no fundamental limitations that place any accuracy restriction on the compu-
tational process; accuracy can only be limited by the state-of-the-art of hardware
capability.

In the following subsections, the detailed analytic models of the computational
errors are presented for both discrete and random motions. In addition, three error
sources are discussed which are associated with a triad of gyros that must be analyzed
on a system basis (three sensors plus the computational process). They yield an
attitude error even for a perfect computational process because of the computer's
processing of erroneous sensor data. The errors considered are: gyro output axis
acceleration sensitivity, unmatched gyro loop frequency response and the finite band-
width of the gyro loop.

1. Discrete Motions

Three self-starting numerical integration schemes of different order accuracy
were considered in the analyses directed towards establishment of the characteristics
of the computational errors for a restrained gyro attitude system: rectangular, 2nd
order Runge-Kutta and 4th order Runge-Kutta. Appendix B presents the numerical
difference process for each of these schemes. A first order accurate extraction of
rate from the gyro outputs is employed with the first and second order schemes; a
second order extraction process presented in Appendix B is used with the fourth order
scheme.
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